PROVE THAT PROBLEMS IN DIFFERENTIATION

Question 1 :

Differentiate the following

If u = tan-1 [√(1+x2) - 1]/x and v = tan-1x, find du/dv

Solution :

 v = tan-1x

x  =  tan v

u = tan-1 [√(1+tan2v) - 1]/tan v

u = tan-1 [√(sec2v) - 1]/tan v

u = tan-1 [sec v - 1]/tan v

By applying sec v = 1/cos v and tan v = sin v / cos v

u = tan-1 ((1 - cos v)/sin v)

u = tan-1 ((2sin2 (v/2))/2sin (v/2) cos (v/2))

u = tan-1 ((sin (v/2)/cos (v/2))

u = tan-1 (tan (v/2))

u = v/2

du/dv  =  1/2

Question 2 :

Find the derivative with tan-1 (sin x/(1 + cos x)) with respect to tan-1 (cos x/(1 + sin x))

Solution :

Let u = tan-1 (sin x/(1 + cos x))

u  =  tan-1 [(2 sin (x/2) cos (x/2)/(2 cos2 (x/2))]

  =  tan-1 [(sin (x/2) /(cos (x/2)]

  =  tan-1 (tan (x/2))

u = x/2

du/dx  =  1/2    ------(1)

Let v  =  tan-1 (cos x/(1 + sin x))

v  =  tan-1 (sin (π/2 - x)/(1 + cos (π/2 - x))

By applying the trigonometric formula for sin x and 1 + cos x, we get

v  =  tan-1 (sin (π/2 - x/2)/cos (π/2 - x/2))

v  =  tan-1 (tan (π/2 - x))

v  =  (π/2 - x/2)

dv/dx  =  -1/2   ------(2)

From (1) and (2), we have to find the value of du/dv

(1)/(2)  ==>  (1/2) / (-1/2)

  =  -1

Question 3. :

If y = sin-1x then find y''

Solution :

y = sin-1x

y'  =  1/√(1 - x2

√(1-x2)  (y')  =  1

√(1-x2)  (y'') + y' (1/2√(1-x2))(-2x)  =  0

√(1-x2)  (y'') + y' (-x/√(1-x2))  =  0

((1-x2)  (y'') - y' x)/√(1-x2)  =  0

(1-x2)  (y'') - y' x  =  0

y''  =  xy'/(1-x2)

y''  =  xy'/(1-x2)

By applying the value of y', we get

y''  =  x( 1/√(1 - x2))/(1-x2)

y''  =  x/(1 - x2)3/2

Question 4 :

If y = e^(tan-1x) show that (1+ x2 ) y'' + (2x −1) y' = 0 .

Solution :

y = e^(tan-1x) 

log y  =  tan-1x

(1/y)y'  =  1/(1+x2)

y'  =  y/(1+x2)

y''  =  [(1 + x2)y' -  y(2x)] / (1+x2)2

(1+x2)y''  =  [(1 + x2)y' -  y(2x)]

By dividing (1 + x2) on both sides, we get

  (1+x2) y''  =  y' - 2xy/(1+x2)

  (1+x2) y''  =  y' - 2xy'

  (1+x2) y''  =  y'(1 - 2x)

  (1+x2) y''  =  - y'(2x - 1)

  (1+x2) y'' + y'(2x - 1)   =  0

Hence proved.

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. SAT Math Resources (Videos, Concepts, Worksheets and More)

    Dec 23, 24 03:47 AM

    SAT Math Resources (Videos, Concepts, Worksheets and More)

    Read More

  2. Digital SAT Math Problems and Solutions (Part - 91)

    Dec 23, 24 03:40 AM

    Digital SAT Math Problems and Solutions (Part - 91)

    Read More

  3. Digital SAT Math Problems and Solutions (Part - 90)

    Dec 21, 24 02:19 AM

    Digital SAT Math Problems and Solutions (Part - 90)

    Read More