Problem 1 :
If cos θ = (1/2) (a + 1/a), show that
cos3θ = (1/2)(a3 + 1/a3)
Solution :
cos 3θ = 3 cos θ - 4 cos3θ
cos 3θ = 4 [(1/2) (a + 1/a)]3 - 3 (1/2) (a + 1/a)
= 4 [(1/8) (a + 1/a)3] - (3/2) (a + 1/a)
= (a + 1/a) [(1/2) (a + 1/a)2 - (3/2)]
= (a + 1/a) [(1/2) (a2 + 1/a2 + 2 - (3/2)]
= (a + 1/a) [(1/2) (a2 + 1/a2 - (1/2)]
= (1/2) (a + 1/a)(a2 + 1/a2 - (1/2))
(a + b)(a2 - ab + b2) = a3 + b3
= (1/2) (a3 + 1/a3)
Problem 2 :
Prove that
cos 5θ = 16cos5θ - 20 cos3 θ + 5cos θ
Solution :
cos 5θ = cos (2θ + 3θ)
= cos 2θ cos 3θ - sin 2θ sin 3θ
(1) ==> cos 2θ cos 3θ
By applying the formula for cos 2θ and cos 3θ, we get
cos 2θ cos 3θ = (2cos2θ - 1)(4cos3θ - 3cosθ)
= 8cos5θ - 6cos3θ - 4cos3θ + 3cosθ
= 8cos5θ - 10cos3θ + 3cosθ --------(1)
(2) ==> sin 2θ sin 3θ
By applying the formula for sin 2θ and sin 3θ, we get
sin 2θ sin 3θ = 2sinθcosθ(3sinθ-4sin3θ)
= 6sin2θcos θ - 8sin4θ cosθ
= 6(1-cos2θ)cos θ - 8(1-cos2θ)2 cosθ
= 6 cos θ - 6cos3θ - 8 cosθ (1 - 2cos2θ + cos4θ)
= 6 cos θ - 6cos3θ - 8 cosθ + 16cos3θ - 8 cos5θ
= 10cos3θ - 2 cosθ - 8 cos5θ --------(2)
(1) - (2)
= (8cos5θ-10cos3θ+3cosθ) - (10cos3θ-2 cosθ-8 cos5θ)
= 8cos5θ-10cos3θ+3cosθ - 10cos3θ+2 cosθ+8 cos5θ
= 16cos5 θ − 20 cos3 θ + 5cos θ.
Hence proved.
Problem 3 :
Prove that
sin 4α = 4 tan α [(1 − tan2α)/(1 + tan2α)2]
Solution :
R.H.S
4 tan α [(1 − tan2α)/(1 + tan2α)2]
= 2 (2 tan α) [(1 − tan2α)/(1 + tan2α)(1 + tan2α)]
= 2 (2 tan α/(1 + tan2α)) [(1 − tan2α)/(1 + tan2α)]
= 2 (sin 2α) (cos2α)
= sin 2(2α)
= sin 4α
Kindly mail your feedback to v4formath@gmail.com
We always appreciate your feedback.
©All rights reserved. onlinemath4all.com
Nov 05, 24 11:16 AM
Nov 05, 24 11:15 AM
Nov 02, 24 11:58 PM