Example 1 :
If a cos θ − b sin θ = c, show that
a sin θ + b cos θ = ± √a2 + b2 − c2.
Solution :
Let (a cos θ − b sin θ)2 ----(1)
(a sin θ − b cos θ)2 ----(2)
By expanding (1) using algebraic identity, we get
(a cos θ−b sin θ)2 = (a cos θ)2 + (b sin θ)2 + 2ab sin θcos θ
= a2 cos2 θ + b2 sin2 θ + 2ab sin θcos θ ---(1)
By expanding (2) using algebraic identity, we get
(a sin θ−b cos θ)2 = (a sin θ)2 + (b cos θ)2 - 2ab sin θcos θ
= a2 sin2 θ + b2 cos2 θ - 2ab sin θcos θ ---(2)
(1) + (2)
= a2 cos2 θ + a2 sin2 θ + b2 sin2 θ + b2 cos2 θ
= a2 (cos2 θ + sin2 θ) + b2 (cos2 θ + sin2 θ)
(a cos θ − b sin θ)2 + (a sin θ − b cos θ)2 = a2 + b2
(a sin θ − b cos θ)2 = a2 + b2 - (a cos θ − b sin θ)2
Here the value of a cos θ − b sin θ is c.
(a sin θ − b cos θ)2 = a2 + b2 - c2
(a sin θ − b cos θ) = ± √a2 + b2 - c2
Example 2 :
If sin θ + cos θ = m, show that
cos6 θ + sin6 θ = 4 − 3 (m2 − 1)2/4, where m2 ≤ 2.
Solution :
L.H.S = cos6 θ + sin6 θ = (cos2 θ)3 + (sin2 θ)3
a3 + b3 = (a + b)3 - 3ab (a + b)
(cos2θ)3+(sin2θ)3
= (cos2 θ + sin2 θ)3 - 3 sin2 θcos2 θ(cos2 θ + sin2 θ)
= (1)3 - 3 sin2 θ cos2 θ(1)
= 1 - 3 sin2 θ cos2 θ -------(1)
= 1 - 3 (sin θ cos θ)2 -------(1)
sin θ + cos θ = m
Taking squares on both sides, we get
(sin θ + cos θ)2 = m2
sin2 θ + cos2 θ + 2sin θ cos θ = m2
1 + 2sin θ cos θ = m2
sin θ cos θ = (m2 - 1)/2
Applying the value of sin θ cos θ in (1)
= 1 - 3 ((m2 - 1)/2)2
= 1 - [3 (m2 - 1)2/4]
= [4 - 3 (m2 - 1)2]/4
Kindly mail your feedback to v4formath@gmail.com
We always appreciate your feedback.
©All rights reserved. onlinemath4all.com
Nov 05, 24 11:16 AM
Nov 05, 24 11:15 AM
Nov 02, 24 11:58 PM