To learn the important trigonometric identities,
Abbreviations used in the problems :
* L.H.S -----> Left hand side
* R.H.S -----> Right hand side
Problem 1 :
Prove the following trigonometric identities.
(i) cotθ + tanθ = secθ cscθ
Solution :
cotθ = cosθ/sinθ
tanθ = sinθ/cosθ
L.H.S :
The reciprocal formula for 1/sin θ is cosec θ and 1/cos θ is sec θ.
Hence it is proved.
(ii) tan4θ + tan2θ = sec4θ − sec2θ
Solution :
L.H.S :
tan4θ + tan2θ = (tan2θ)2 + tan2θ
= tan2θ(tan2θ + 1)
= tan2θ(sec2θ)
= (sec2θ - 1)(sec2θ)
= sec4θ - sec2θ
R.H.S
Hence it is proved.
Problem 2 :
Prove the following identities.
(i) (1 - tan2 θ)/(cot2 θ - 1) = tan2 θ
Solution :
L.H.S :
= (1 - tan2 θ) / (cot2 θ - 1)
Formula for tan θ and cot θ
cot θ = cos θ / sin θ
tan θ = sin θ / cos θ
= tan2 θ
R.H.S
Hence it is proved.
(ii) cos θ/(1 + sin θ) = sec θ + tan θ
Solution :
L.H.S :
= cos θ/(1 + sin θ)
By multiplying the conjugate of denominator, we get
= [cos θ/(1 + sin θ)] [(1 - sin θ)/(1 - sin θ)]
= [cos θ(1 - sin θ)/(1 - sin θ)(1 + sin θ)]
= [cos θ(1 - sin θ)/(1 - sin2 θ)]
= [cos θ(1 - sin θ)/cos2 θ]
= (1 - sin θ)/cos θ
= (1/cos θ) - (sin θ/cos θ)
= sec θ - tan θ
R.H.S
Problem 3 :
Prove the following identities.
(i) √[(1 + sin θ)/(1 - sin θ)] = sec θ + tan θ
Solution :
L.H.S :
= (1/cos θ) + (sin θ/cos θ)
= sec θ + tan θ
R.H.S
Hence proved.
(ii) [√(1 + sin θ)/(1 - sin θ)] + [√(1 - sin θ)/(1 + sin θ)] = 2 sec θ
Solution :
L.H.S :
= [√(1 + sin θ)/(1 - sin θ)] + [√(1 - sin θ)/(1 + sin θ)]
= 2/cos θ
= 2 sec θ
R.H.S
Hence proved .
Problem 4 :
Prove the following identities.
(i) sec6 θ = tan6 θ + 3 tan2 θ sec2 θ + 1
Solution :
R.H.S :
tan6 θ + 3 tan2 θ sec2 θ + 1
= (tan2 θ)3 + 3 (tan2 θ) (sec2 θ) + 1
(a + b)3 = a3 + b3 + 3ab (a + b)
= (tan2 θ)3 + 3 (tan2 θ) 1 (tan2 θ + 1) + 13
= (tan2 θ + 1)3
= (sec2 θ)3
= sec6 θ
R.H.S
Hence proved.
(ii) (sin θ + sec θ)2 + (cos θ + cosec θ)2 = 1 + (sec θ + cosec θ)2
Solution :
L.H.S :
= (sin θ + sec θ)2 + (cos θ + cosec θ)2
= sin2 θ + sec2 θ + 2 sin θ sec θ + cos2 θ + cosec2 θ + 2 cos θ cosec θ
= (sin2 θ + cos2 θ) + sec2 θ + cosec2 θ + 2 (sin θ sec θ + cos θ cosec θ)
= 1 + sec2 θ + cosec2 θ + 2 [(sin θ/cos θ) + (cos θ/sin θ)]
= 1 + sec2 θ + cosec2 θ + 2 [(sin2θ + cos2θ)/cos θ sin θ)]
= 1 + sec2 θ + cosec2 θ + 2 (1/cos θ sin θ)
= 1 + sec2 θ + cosec2 θ + 2 secθ cosec θ
= 1 + (sec θ + cosec θ)2
R.H.S
Hence proved.
Kindly mail your feedback to v4formath@gmail.com
We always appreciate your feedback.
©All rights reserved. onlinemath4all.com
Nov 07, 24 09:33 AM
Nov 07, 24 09:19 AM
Nov 07, 24 09:12 AM