PROVING TRIGONOMETRY QUESTIONS FOR GRADE 10

Question 1 :

Prove that 

  =  0

Solution :

L.H.S :

  =  (tan2θ - 1)/(tan2θ + 1)

  =  [(sin2θ/cos2θ) - 1] / [(sin2θ/cos2θ) + 1]

  =  [(sin2θ - cos2θ)/cos2θ] / [(sin2θ + cos2θ)/cos2θ]

  =  [(sin2θ - cos2θ)/cos2θ]  [cos2θ/1]

  =  sin2θ - cos2θ

  =  1 - cos2θ - cos2θ

  =  1 - 2cos2θ

R.H.S 

Hence proved.

Question 2 :

Prove that 

Solution :

[(1 + sin θ - cos θ)/(1 + sin θ + cos θ)]

   =   [(1 + sinθ) - cos θ]2/[(1 + sinθ) + cos θ]2

Expanding the numerator and denominator using the formula (a - b)2 and (a + b)2

   =   [(1+sinθ)2+cos2θ - 2(1+sin θ)cos θ] / [(1+sinθ)2+cos2θ + 2(1+sin θ)cos θ]

Numerator :

(1 + sinθ)+ cos2θ - 2(1 + sin θ)cos θ

  =  1 + sin2θ + 2sinθ + cos2θ - 2cos θ - 2cos θ sin θ

  =  1 + (sin2θ + cos2θ) + 2sinθ  - 2cos θ - 2cos θ sin θ

  =  2 + 2sinθ  - 2cos θ - 2cos θ sin θ

  =  2(1 + sinθ  - cos θ - cos θ sin θ) 

=  2 [(1 + sinθ) - cos θ(1 + sinθ)]

=  2 [(1 + sinθ) (1 - cos θ)]  -----(1)

Denominator :

[(1+sinθ)2+cos2θ + 2(1+sin θ)cos θ]

  =  1 + sin2θ + 2sinθ + cos2θ + 2cos θ + 2cos θ sin θ

  =  1 + (sin2θ + cos2θ) + 2sinθ  + 2cos θ + 2cos θ sin θ

  =  2 + 2sinθ + 2cos θ + 2cos θ sin θ

  =  2(1 + sinθ + cos θ + cos θ sin θ) 

=  2 [(1 + sinθ) + cos θ(1 + sinθ)]

=  2 [(1 + sinθ) (1 + cos θ)]  -----(2)

(1)/(2)

  =  {2 [(1 + sinθ) (1 - cos θ)]  }/{2 [(1 + sin θ) (1 + cos θ)]}

  =  (1 - cos θ)/(1 + cos θ)

Hence proved.

Question 3 :

If x sinθ + y cos3 θ  = sin θ cos θ and x sin θ = y cos θ , then prove that x2 +y2 = 1 .

Solution :

x sinθ (sin2θ) + (y cosθ)cos2θ = sinθcosθ

x sinθ (sin2θ) + (x sinθ) cos2θ = sinθcosθ

Since x sinθ = y cosθ

x sinθ (sin2θ + cos2θ) = sin θ cosθ

x sinθ = sinθ cosθ

x = cos θ 

y = sinθ

Hence x2 + y2 = cos2θ + sin2θ = 1. 

Question 4 :

If a cos θ - b sin θ  =  c, then prove that (a sin θ + b cos θ)  =  ± √(a2 + b2 - c2)

Solution :

a cos θ - b sin θ = c (Squaring on both sides )

a2cos2 θ + b2 sin2 θ - 2 a b sin θ cos θ = c2 ----------(1)

Let a sin θ + b cos θ = k  (Squaring on both sides )

b2 cos2 θ + a2 sin2 θ + 2ab sin θ cos θ = k2 ----------(2)

Adding (1) and (2) we get

a2 + b2  = c2 + k2

k2 = a2 + b2 - c2

k = √(a2 + b2 - c2)

a sin θ + b cos θ = √(a2 + b2 - c2)

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. AP Calculus AB Problems with Solutions

    Dec 26, 24 07:41 AM

    apcalculusab1.png
    AP Calculus AB Problems with Solutions

    Read More

  2. SAT Math Resources (Videos, Concepts, Worksheets and More)

    Dec 23, 24 03:47 AM

    SAT Math Resources (Videos, Concepts, Worksheets and More)

    Read More

  3. Digital SAT Math Problems and Solutions (Part - 91)

    Dec 23, 24 03:40 AM

    Digital SAT Math Problems and Solutions (Part - 91)

    Read More