QUESTIONS BASED ON PARABOLA ELLIPSE AND HYPERBOLA

(1)  Find the equation of the parabola in each of the cases given below:

(i) focus (4, 0) and directrix x = −4.          Solution

(ii) passes through (2,-3) and symmetric about y -axis.        Solution

(iii) vertex (1,-2) and focus (4,-2).        Solution

(iv) end points of latus rectum(4,-8) and (4,8) .        Solution

(2)  Find the equation of the ellipse in each of the cases given below:

(i) foci (± 3 0), e  =  1/2            Solution

(ii) foci (0, ± 4) and end points of major axis are (0, ± 5).        Solution

(iii)  length of latus rectum 8, eccentricity = 3/and major axis on x -axis.        Solution

(iv) length of latus rectum 4 , distance between foci 42 and major axis as y - axis.        Solution

(3)  Find the equation of the hyperbola in each of the cases given below:

(i) foci (± 2, 0) , eccentricity = 3/2.        Solution

(ii) Centre (2, 1) , one of the foci (8, 1) and corresponding directrix x = 4 .       Solution

(iii) passing through (5,−2) and length of the transverse axis along x axis and of length 8 units.       Solution

(4)  Find the vertex, focus, equation of directrix and length of the latus rectum of the following:

(i) y2  = 16x             Solution

(ii) x2 = 24y           Solution

(iii)  y2 = −8x         Solution

(iv) x2 - 2x + 8y + 17  =  0             Solution 

(v) y2 - 4y - 8x + 12  =  0           Solution

(5)  Prove that the length of the latus rectum of the hyperbola (x2/a2) - (y2/b2)  =  1 is 2b2/a.       Solution

(6)  Show that the absolute value of difference of the focal distances of any point P on the hyperbola is the length of its transverse axis         Solution

(7)  Identify the type of conic and find centre, foci, vertices, and directrices of each of the following:

(i)  (x2/25) + (y2/9) = 1            Solution

(ii)  (x2/3) + (y2/10) = 1        Solution

(iii)  (x2/25) - (y2/144) = 1        Solution

(iv)  (y2/16) - (x2/9) = 1        Solution

(8)  Identify the type of conic and find centre, foci, vertices, and directrices of each of the following:

(i)  [(x - 3)2/225] + [(y - 4)2/289] = 1          Solution

(ii)  [(x + 1)2/100] + [(y - 2)2/64] = 1        Solution

(iii)  [(x + 3)2/225] - [(y - 4)2/64] = 1        Solution

(iv)  [(y - 2)2/25] - [(x + 1)2/16] = 1        Solution

(v) 18x2 + 12y2 − 144x + 48y + 120 = 0        Solution

(vi) 9x2 − y2 − 36x − 6y + 18 = 0        Solution

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. Digital SAT Math Problems and Solutions (Part - 62)

    Nov 05, 24 11:16 AM

    Digital SAT Math Problems and Solutions (Part - 62)

    Read More

  2. SAT Math Resources (Videos, Concepts, Worksheets and More)

    Nov 05, 24 11:15 AM

    SAT Math Resources (Videos, Concepts, Worksheets and More)

    Read More

  3. Worksheet on Proving Trigonometric Identities

    Nov 02, 24 11:58 PM

    tutoring.png
    Worksheet on Proving Trigonometric Identities

    Read More