QUESTIONS ON CUBE ROOT OF UNITY FOR CLASS 12

The solutions of the equation z= 1, for positive values of integer n, are the n roots of the unity. In polar form the equation z= 1 can be written as

zn = cos (0 + 2kπ) + i sin (0 + 2kπ)

= ei2kπ

Here k = 0, 1, 2, ...........

Using DeMoivre’s theorem, we find the nth roots of unity from the equation given below

z = cos (2kπ/n) + i sin (2kπ/n)

= ei2kπ/n

Where k = 0, 1, 2, ......... n - 1

The nth roots of unity 1, ω, ω2, ...........ωn-1 are in geometric progression with common ratio ω

Sum of all nth roots of unity is 

1 + ω + ω2+ ...........+ ωn-1 = 0

Product of all nth roots of units is 

1 (ω) (ω2) ........... ωn-1 = (-1)n-1

(1) All the n roots of nth roots unity are in Geometrical Progression

(2) Sum of the n roots of nth roots unity is always equal to zero.

(3) Product of the n roots of nth roots unity is equal to (-1)n-1

(4) All the n roots of nth roots unity lie on the circumference of a circle whose centre is at the origin and radius equal to 1 and these roots divide the circle into n equal parts and form a polygon of n sides.

Question 1 :

Find the cube root of unity.

Solution :

Let z = (1)1/3

Writing 1 in polar form

1 = cos 0 + i sin 0

(1)1/3 = [cos (0 + 2kπ) + i sin (0 + 2kπ)]1/3

(1)1/3 = [cos 2kπ + i sin 2kπ]1/3

= [cos 2kπ/3 + i sin 2kπ/3]

Applying k = 0

= [cos 0 + i sin 0]

= 1

Applying k = 1

= [cos 2kπ/3 + i sin 2kπ/3]

= cos (2π/3) + i sin (2π/3)

cos (2π/3) = -1/2

sin (2π/3) = √3/2

cos (2π/3) + i sin (2π/3) = -1/2 + i(√3/2)

Applying k = 2

= [cos 2kπ/3 + i sin 2kπ/3]

= cos (4π/3) + i sin (4π/3)

cos (4π/3) = 1/2

sin (4π/3) = -√3/2

cos (4π/3) + i sin (4π/3) = 1/2 - i(√3/2)

So, cube root of unity are

1, -1/2 + i(√3/2) and 1/2 - i(√3/2)

Question 2 :

Solve the equation z3 + 8i = 0

Solution :

z3 + 8i = 0

z3 = - 8i

z = (-8i)1/3

z = (-8)1/3i1/3

z = -2 i1/3

Writing 1 in polar form

1 = cos 0 + i sin 0

-2 (1)1/3 = -2 [cos (0 + 2kπ) + i sin (0 + 2kπ)]1/3

-2 (1)1/3 = -2 [cos 2kπ + i sin 2kπ]1/3

= -2 [cos 2kπ/3 + i sin 2kπ/3]

Applying k = 0

= -2 [cos 0 + i sin 0]

= -2

Applying k = 1

= -2 [cos 2kπ/3 + i sin 2kπ/3]

= -2 [cos (2π/3) + i sin (2π/3)]

cos (2π/3) = -1/2

sin (2π/3) = √3/2

-2 [cos (2π/3) + i sin (2π/3)] = -2[-1/2 + i(√3/2)]

= 1 - i√3

Applying k = 2

=-2[cos 2kπ/3 + i sin 2kπ/3]

= -2[cos (4π/3) + i sin (4π/3)]

cos (4π/3) = 1/2

sin (4π/3) = -√3/2

-2 [cos (4π/3) + i sin (4π/3)] = -2[1/2 - i(√3/2)]

= -1 + i√3

So, the required roots are 

1, 1 - i√3 and -1 + i√3

Question 3 :

If ω ≠ 1 is a cube root of unity, show that

[(a + b ω + cω2)/(b + c ω + a ω2)] + [(a + b ω + cω2)/(c + a ω + b ω2)]  =  -1

Solution :

L.H.S :

Multiply both numerator and denominator of the first fraction by ω2

  =   (ω2/ω2[(a + b ω + cω2)/(b + c ω + a ω2)]

  =  [ω2(a + b ω + cω2)/ω2(b + c ω + a ω2)]

  =  (aω2 + ω3 + cω4)/ω2(b + c ω + a ω2)

  =  (aω2 + b + cω)/ω2(b + c ω + a ω2)

  =  1/ω ----(1)

Multiply both numerator and denominator of the second fraction by ω

  =  (ω/ω[(a + b ω + cω2)/(c + a ω + b ω2)]

  =  [ω(a + b ω + cω2)/ω(c + a ω + b ω2)]

=  (aω + bω2 + cω3)/ω(c + a ω + b ω2)

=  (c + a ω + b ω2)/ω(c + a ω + b ω2)

=  1/ω----(2)

(1) + (2)

  =   (1/ω2) + (1/ω)

  =  (ω + ω2)/ω3

  =  -1/1

  =  -1  R.H.S

Hence proved.

Question 4 :

Show that 

Solution :

First let us try to write the given complex numbers in polar form.

[(√3 + i)/2]5

r  =  √[(√3/2)2 + (1/2)2]

r  =  √[(3 + 1)/4]

r  =   1

Argument :

α  = tan-1|y/x|

α  = tan-1|(1/2) / (√3/2)|

  =  tan-1|(1/√3)|

α  = π/6

Polar form of the first part,

 [(√3 + i)/2] =  1(cosπ/6 + i sin π/6)5

By applying De moiver's theorem, we get

=  (cos 5π/6 + i sin 5π/6)  -----(1)

Similarly, polar form of the second part

 [(√3 - i)/2] =  1(cosπ/6 - i sin π/6)5

By applying De moiver's theorem, we get

=  (cos 5π/6 - i sin 5π/6)  -----(2)

(1) + (2)

  =  2 cos 5π/6

  =  2 cos (150)

  =  2 cos (180 - 30) (lies in 2nd quadrant)

  =  -2 (√3/2)

  =  - √3 

Hence proved.

Question 5 :

Find the value of 

Solution :

Let z  =  sin π/10 + i cos π/10

z bar  =  1/z  =  sin π/10 - i cos π/10

  =  [(1 + z) /  (1 + (1/z))]10

  =  z10

  =  [sin π/10 + i cos π/10]10

  =  [cos [(π/2) - (π/10)] + i sin [(π/2) - (π/10)]]10

  =  [cos (4π/10) + i sin (4π/10)]10

  =  [cos 4π + i sin 4π]

  =  1 + i(0)

  =  1

Hence the answer is 1.

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. Digital SAT Math Problems and Solutions (Part - 150)

    Apr 25, 25 11:46 AM

    Digital SAT Math Problems and Solutions (Part - 150)

    Read More

  2. AP Calculus AB Problems with Solutions (Part - 19)

    Apr 24, 25 11:10 PM

    AP Calculus AB Problems with Solutions (Part - 19)

    Read More

  3. AP Calculus AB Problems with Solutions (Part - 18)

    Apr 24, 25 11:06 PM

    apcalculusab17.png
    AP Calculus AB Problems with Solutions (Part - 18)

    Read More