Question 1 :
Differentiate y = (tan x - 1)/ sec x
Solution :
y = (tan x - 1)/ sec x
u = tan x - 1 ===> u' = sec2 x - 0
v = sec x ===> v' = sec x tan x
Quotient rule :
d(u/v) = (vu' - uv') / v2
= [sec x(sec2 x) - (tan x - 1)sec x tan x] / sec2 x
= [sec3 x - tan2x sec x + sec x tan x] / sec2 x
= [sec x(sec2x - tan2x) + sec x tan x] / sec2 x
dy/dx = [sec x(1) + sec x tan x] / sec2 x
dy/dx = sec x(1 + tan x)/ sec2x
dy/dx = (1 + (sin x/cos x))/(1/cos x)
dy/dx = ((cos x + sin x)/cos x) ⋅ (cos x / 1)
dy/dx = cos x + sin x
Question 2 :
Differentiate y = sin x / x2
Solution :
y = sin x / x2
u = sin x ==> u' = cos x
u = x2 ==> v' = 2 x
dy/dx = [x2 (cos x) - sin x(2x)]/(x2)2
dy/dx = [x2 (cos x) - 2x sin x]/x4
dy/dx = x [x cos x - 2 sin x]/x4
dy/dx = [x cos x - 2 sin x]/x3
Question 3 :
Differentiate y = tan θ (sin θ + cos θ)
Solution :
y = tan θ (sin θ + cos θ)
u = tan θ ==> u' = sec2 θ
v = sin θ + cos θ ==> v' = cos θ - sin θ
dy/dx = tan θ (cos θ - sin θ) + (sin θ + cos θ) (sec2θ)
= tan θ cos θ - tan θ sin θ + sin θ sec2θ + cos θ sec2θ
= sin θ - (sin2 θ/cos θ) + (sin θ/cos2θ) + (1/cos θ)
= sin θ - (sin2 θ/cos θ) + (tan θ sec θ) + (1/cos θ)
= sin θ - ((1 - sin2 θ)/cos θ) + (tan θ sec θ)
= sin θ - (cos2 θ/cos θ) + (tan θ sec θ)
dy/dx = sin θ - cos θ + tan θ sec θ
Question 4 :
Differentiate y = cosec x ⋅ cot x
Solution :
y = cosec x ⋅ cot x
u = cosec x ==> u' = -cosec x cot x
v = cot x ==> v' = -cosec2 x
dy/dx = cosec x (-cosec2 x) + cot x(-cosec x cot x)
= - cosec3 x - cosec x cot2 x
= - (1/sin3 x) - (1/sin x) (cos2 x/sin2 x)
= - (1/sin3 x) - (cos2 x/sin3 x)
dy/dx = - (1 + cos2x) /sin3 x
Kindly mail your feedback to v4formath@gmail.com
We always appreciate your feedback.
©All rights reserved. onlinemath4all.com
Nov 05, 24 11:16 AM
Nov 05, 24 11:15 AM
Nov 02, 24 11:58 PM