RATIONALISING FACTOR

Rationalising Factor :

A number that is needed to multiply in order to make an irrational number as rational number. 

For example, to make the irrational number √3 as rational, we need to multiply √3 by √3.

√3 ⋅ √3  =  3

So, √3 is the rationalising factor of √3

The Simplest Rationalising Factor :

Write the given irrational number in simplest form and identify the simplest rationalising factor of the given irrational number. 

Consider the irrational number √50.

Write √50 in the simplest form. 

√(2 ⋅ 5 ⋅ 5)  =  5√2

To make 5√2 as rational, we need to multiply √2. 

5√2 ⋅ √2  =  ⋅ 2  =  10  

So, √2 is the simplest rationalising factor of √50

Other Forms of Rationalising Factors : 

1.  (a + √x) and (a - √x) are rationalizing factors to each other.

2.  (a + b√x) and (a - b√x) are rationalizing factors to each other.

3.  (√x + y) and (√x y) are rationalizing factors of each other.

Solved Problems

Write the rationalising factor of each of the following irrational numbers :

Problem 1 :

3√2

Solution :

3√2 is already in simplest form. 

=  3√2 ⋅ √2

=  3(√2 ⋅ √2)

=  3 ⋅ 2

=  6

6 is a rational number. 

So, the rationalizing factor of 3√2 is √2.

Problem 2 :

43√25

Solution :

43√25 is already in simplest form. 

=  43√25  3√5

=  4(3√25  3√5)

=  43√(25  5)

=  43(5 ⋅ 5 ⋅ 5)

=  4 ⋅ 5

=  20

20 is a rational number. 

So, the rationalizing factor of 23√25 is 3√5.

Problem 3 :

3√432

Solution :

Write 3√432 in the simplest form. 

3√432  =  3√(2 ⋅ 6  6 ⋅ 6)

=  63√2

The simplest form of 3√412 is 63√2.

=  63√2 ⋅ 3√4

=  63√(2 ⋅ 4)

=  63√(2 ⋅ 2 ⋅ 2)

=  6 ⋅ 2

=  12

12 is a rational number. 

So, the rationalizing factor of 3√432 is 3√4.

Problem 4 :

2 + √3

Solution :

(2 + √3) is already in simplest form. 

=  (2 + √3)(2 - √3)

Use the algebraic identity a2 - b2 = (a + b)(a - b). 

=  22 - (√3)2

=  22 - (√3)2

=  4 - 3

=  1

1 is a rational number. 

So, the rationalizing factor of (2 + √3) is (2 - 4√3).

Problem 5 :

5 - 4√3

Solution :

(5 - 4√3) is already in simplest form. 

=  (5 - 4√3)(5 + 4√3)

Use the algebraic identity a2 - b2 = (a + b)(a - b). 

=  52 - (4√3)2

=  25 - 42(√3)2

  =  25 - 16(3)

=  25 - 48

=  -23

-23 is a rational number. 

So, the rationalizing factor of (5 - 4√3) is (5 + 4√3).

Problem 6 :

√3 + √2

Solution :

(√3 + √2) is already in simplest form. 

=  (√3 + √2)(√3 - √2)

Use the algebraic identity a2 - b2 = (a + b)(a - b). 

=  (√3)2 - (√2)2

=  3 - 2

=  1

1 is a rational number. 

So, the rationalizing factor of (√2 + √3) is (√2 - √3).

Problem 7 :

√75

Solution :

Write √75 in simplest form. 

 √75  =  √(3 ⋅ 5 ⋅ 5)

The simplest form of √75 is 5√3.

=  5√3 ⋅ √3

=  5(√3 ⋅ √3)

=  5 ⋅ 3

=  15

15 is a rational number. 

So, the rationalizing factor of √75 is √3.

Problem 8 :

√125 + 2

Solution :

Write (√125 + 2) in the simplest form. 

√125 + 2  =  √(5 ⋅ 5 ⋅ 5) + 2

=  5√5 + 2

The simplest form of (√125 + 2) is (5√5 + 2).

=  (5√5 + 2)(5√5 - 2)

Use the algebraic identity a2 - b2 = (a + b)(a - b). 

=  (5√5)2 - 22

=  52(√5)2 - 4

=  25(5) - 4

=  125 - 4

=  121

121 is a rational number. 

So, the rationalizing factor of (√125 + 2) is (5√5 - 2)

Problem 9 :

(√3 - 1)/(√3 + 1) = a - b√3

Solution :

(√3 - 1)/(√3 + 1)

Conjugate of the denominator is √3 - 1

= [(√3 - 1)/(√3 + 1)] [(√3 - 1)/(√3 - 1)]

Multiplying the numerator, we get

= (√3 - 1) (√3 - 1) / (√3 + 1) (√3 - 1)

= (√32 - 2√3(1) + 12) / (√32 - 12)

= (3 - 2√3(1) + 1) / (3 - 1)

= (4 - 2√3) / 2

Factoring 2, we get

= 2(2 - √3) / 2

= 2 - √3

Comparing with

a - b√3

we get a = 2 and b = 1

Problem 10 :

(4 + √2)/(2 + √2) = a - √b

Solution :

(4 + √2)/(2 + √2)

Conjugate of the denominator (2 + √2) is (2 - √2)

= (4 + √2)/(2 + √2) x [(2 - √2) / (2 - √2)]

= [(4 + √2)(2 - √2)]/[(2 + √2)(2 - √2)]

Multiplying the numerators, we get

(4 + √2)(2 - √2) = 4(2) - 4(√2) + 2√2 - √22

= 8 - 2√2 - 2

= 6 - 2√2

Multiplying the denominators, we get

(2 + √2)(2 - √2) = 22 - √22

= 4 - 2

= 2

Dividing numerator by denominator, we get

= (6 - 2√2)/2

= 3 - √2

Comparing with a - √b, we get a = 3 and b = -1

Problem 11 :

If x = 2 + √3, find the value of x3 + 1/x3

Solution :

x3 + 1/x

Comparing with a3 + b3 = (a + b)(a2 - ab + b2)

x3 + (1/x)3 = (x + 1/x)(x2 - x(1/x) + (1/x)2) ---(1)

Given that x = 2 + √3

1/x = 1/(2 + √3)

Multiplying both numerator and denominator by the conjugate of the denominator, we get

= [1/(2 + √3)] [(2 - √3)/(2 - √3)]

(2 - √3)/(2 - √3)(2 - √3)

(2 - √3)/(22 - √32)

(2 - √3)/(4 - 3)

1/x = 2 - √3

x + 1/x = 2 + √3 + 2 - √3 

= 4

x2 = (2 + √3)2

= 22 + 2(2) √3 + √32

= 4 + 4√3 + 3

x2 = 7 + 4√3

1/x2 = (1/x)2

= (2 - √3)2

= 22 - 2(2) √3 + √32

= 4 - 4√3 + 3

1/x= 7 - 4√3

Applying these values in (1), we get

= (x + 1/x)(x2 - x(1/x) + (1/x)2)

= (2 + √3 + 2 - √3)(7 + 4√3 - 1 + 7 - 4√3)

= 4 (14 - 1)

= 4(13)

= 52

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. Digital SAT Math Problems and Solutions (Part - 151)

    Apr 26, 25 11:18 AM

    digitalsatmath183.png
    Digital SAT Math Problems and Solutions (Part - 151)

    Read More

  2. AP Calculus BC Problems with Solutions

    Apr 26, 25 05:49 AM

    AP Calculus BC Problems with Solutions

    Read More

  3. Digital SAT Math Problems and Solutions (Part - 150)

    Apr 25, 25 11:46 AM

    Digital SAT Math Problems and Solutions (Part - 150)

    Read More