RATIONALIZING THE DENOMINATOR WITH VARIABLES

Rationalizing the denominator means eliminating any radical expressions in the denominator such as square roots and cube roots.

Key Idea :

Multiply both the numerator and denominator of the given fraction by an appropriate value, such that after simplification, the denominator no longer contains radicals.

When you have a binomial with radical term like (x + √y) in denominator, multiply both numerator and denominator by the conjugate of (x + √y), that is (x - √y). 

Rationalize the denominator in the following examples.

Example 1 : 

¹⁄

Solution : 

¹⁄

Multiply both the numerator and denominator by √x. 

=  (1 ⋅ √x)/(√x ⋅ √x)

√x/x

Example 2 : 

¹⁄₍ₓ ₊ √y

Solution : 

¹⁄₍ₓ ₊ √y

Multiply both numerator and denominator by (x - √y).

=  [1 ⋅ (x - √y)] / [(x + √y)(x - √y)]

Use the algebraic identity a2 - b= (a + b)(a - b) in denominator to simplify.

(x - √y) / [x2 - (√y)2]

=  (x - √y) / (x2 - y)

Example 3 : 

ˣ ⁺ ʸ⁾⁄√x

Solution : 

ˣ ⁺ ʸ⁾⁄√x

Multiply both the numerator and denominator by √x. 

=  (√x + √y)√x / (√x ⋅ √x)

Distribute and simplify. 

=  [(√x ⋅ √x) + (√y ⋅ √x)] / x

=  [x + √(xy)]/x

Example 4 : 

(√x + √y)/(√x - √y)

Solution : 

=  (√x + √y)/(√x - √y)

Multiply both numerator and denominator by (x + √y).

=  [(√x + √y)(x + √y)] / [(√x - √y)(√x + √y)]

(√x + √y)2 / [(√x)2 - (√y)2]

=  [(√x)2 + 2√x√y + (√y)2] / (x - y)

= (x + 2√(xy) + y) / (x - y)

Example 5 : 

√(100x/11y)

Solution : 

=  √(100x/11y)

Distribute the radical to numerator and denominator. 

=  √(100x)/√(11y)

So, multiply both numerator and denominator by the 11y. 

=  [√(100x) ⋅ √(11y)] / √(11y) ⋅ √(11y)]

Simplify.

=  √(100x ⋅ 11y) / 11y

100 is a perfect square and √100 = 10.

=  10√(11xy) / 11y

Example 6 : 

Find the value of ab.

1/(x + y√3)

Solution : 

=  1/(x + y√3)

Multiply both numerator and denominator by (x - y√3). 

=  [1 ⋅ (x - y√3)] / [(x + y√3)(x - y√3)]

Use the algebraic identity a2 - b= (a + b)(a - b) in denominator to simplify.

=  (x - y√3) / [x2 - (y√3)2]

=  (x - y√3) / [x2 + y2(√3)2]

=  (x - y√3) / (x2 + 3y2)

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. SAT Math Resources (Videos, Concepts, Worksheets and More)

    Jan 07, 25 03:55 AM

    SAT Math Resources (Videos, Concepts, Worksheets and More)

    Read More

  2. Digital SAT Math Problems and Solutions (Part - 97)

    Jan 07, 25 03:53 AM

    digitalsatmath88.png
    Digital SAT Math Problems and Solutions (Part - 97)

    Read More

  3. AP Calculus AB Problems with Solutions (Part - 5)

    Jan 06, 25 05:53 AM

    AP Calculus AB Problems with Solutions (Part - 5)

    Read More