Problems 1-5 : Write the first five terms of the sequence defined recursively.
Problem 1 :
a1 = 28, ak = ak-1 - 4
Problem 2 :
a1 = 15, ak = ak-1 + 3
Problem 3 :
a1 = 32, ak+1 = ak/2
Problem 4 :
a0 = 1, a1 = 3, ak = ak-2 + ak-1
Problem 5 :
a0 = -1, a1 = 5, ak = ak-2 + ak-1
Problems 6-8 : Write the first five terms of the sequence defined recursively. Use the pattern to write the nth term of the sequence as a function of n (Assume n begins with 1).
Problem 6 :
a1 = 6, ak+1 = ak + 2
Problem 7 :
a1 = 25, ak+1 = ak - 5
Problem 8 :
a1 = 81, ak+1 = ak/3
Problem 9 :
Find the 10th, 11th and 12th terms of an arithmetic sequence, if the common difference is 8 and 9th term is 72.
Problem 10 :
Write the first five terms of a geometric sequence whose first term is 5 and common ratio is 2.
1. Answer :
a1 = 28, ak = ak-1 - 4
a1 = 28
a2 = a2-1 - 4 = a1 - 4 = 28 - 4 = 24
a3 = a3-1 - 4 = a2 - 4 = 24 - 4 = 20
a4 = a4-1 - 4 = a3 - 4 = 20 - 4 = 16
a5 = a5-1 - 4 = a4 - 4 = 16 - 4 = 12
2. Answer :
a1 = 15, ak = ak-1 + 3
a1 = 15
a2 = a2-1 + 3 = a1 + 3 = 15 + 3 = 18
a3 = a3-1 + 3 = a2 + 3 = 18 + 3 = 21
a4 = a4-1 + 3 = a3 + 3 = 21 + 3 = 24
a5 = a5-1 + 3 = a4 + 3 = 24 + 3 = 27
3. Answer :
a1 = 32, ak+1 = ak/2
a1 = 32
a2 = a1+1 = a1/2 = 32/2 = 16
a3 = a2+1 = a2/2 = 16/2 = 8
a4 = a3+1 = a3/2 = 8/2 = 4
a5 = a4+1 = a4/2 = 4/2 = 2
4. Answer :
a0 = 1, a1 = 3, ak = ak-2 + ak-1
a0 = 1
a1 = 3
a2 = a2-2 + a2-1 = a0 + a1 = 1 + 3 = 4
a3 = a3-2 + a3-1 = a1 + a2 = 3 + 4 = 7
a4 = a4-2 + a4-1 = a2 + a3 = 4 + 7 = 11
5. Answer :
a0 = -1, a1 = 5, ak = ak-2 + ak-1
a0 = -1
a1 = 5
a2 = a2-2 + a2-1 = a0 + a1 = -1 + 5 = 4
a3 = a3-2 + a3-1 = a1 + a2 = 5 + 4 = 9
a4 = a4-2 + a4-1 = a2 + a3 = 4 + 9 = 13
6. Answer :
a1 = 6, ak+1 = ak + 2
a1 = 6
a2 = a1+1 = a1 + 2 = 6 + 2 = 8
a3 = a2+1 = a2 + 2 = 8 + 2 = 10
a4 = a3+1 = a3 + 2 = 10 + 2 = 12
a5 = a4+1 = a4 + 2 = 12 + 2 = 14
In general,
an = 2n + 4
7. Answer :
a1 = 25, ak+1 = ak - 5
a1 = 25
a2 = a1+1 = a1 - 5 = 25 - 5 = 20
a3 = a2+1 = a2 - 5 = 20 - 5 = 15
a4 = a3+1 = a3 - 5 = 15 - 5 = 10
a5 = a4+1 = a4 - 5 = 10 - 5 = 5
In general,
an = 30 - 5n
8. Answer :
a1 = 81, ak+1 = ak/3
a1 = 81
a2 = a1+1 = a1/3 = 81/3 = 27
a3 = a2+1 = a2/3 = 27/3 = 9
a4 = a3+1 = a3/3 = 9/3 = 3
a5 = a4+1 = a4/3 = 3/3 = 1
In general,
an = 81(1/3n-1)
= 81(3/3n)
= 243/3n
9. Answer :
a9 = 72 and d = 8
a10 = a9 + d = 72 + 8 = 80
a11 = a10 + d = 80 + 8 = 88
a12 = a11 + d = 88 + 8 = 96
10. Answer :
a1 = 5 and r = 2
a2 = a1 ⋅ r = 5 ⋅ 2 = 10
a3 = a2 ⋅ r = 10 ⋅ 2 = 20
a4 = a3 ⋅ r = 20 ⋅ 2 = 40
a5 = a4 ⋅ r = 40 ⋅ 2 = 80
Kindly mail your feedback to v4formath@gmail.com
We always appreciate your feedback.
©All rights reserved. onlinemath4all.com
Nov 26, 24 08:41 PM
Nov 26, 24 08:33 PM
Nov 26, 24 05:55 AM