Question 1 :
Given the complex number z = 2 + 3i , represent the complex numbers in Argand diagram.
(i) z, iz , and z + iz
Solution :
z = 2 + 3i
iz = i(2 + 3i)
= 2i + 3i2
= 2i + 3(-1)
iz = 2i - 3
z + iz = (2 + 3i) + i(2 + 3i)
= 2 + 3i + 2i + 3i2
= 2 + 3i + 2i + 3(-1)
= 2 + 3i + 2i - 3
= (2 - 3) + i(3 + 5)
z + zi = -1 + 8i
Set of ordered pairs of z is (2, 3) for iz is (-3, 2) and for z + zi is (8, -1).
(ii) z, − iz , and z − iz .
Solution :
z = 2 + 3i
-iz = -i(2 + 3i)
= -2i - 3i2
= -2i - 3(-1)
-iz = -2i + 3
z - iz = (2 + 3i) - i(2 + 3i)
= 2 + 3i - 2i - 3i2
= 2 + 3i - 2i - 3(-1)
= 2 - 2i + 3i + 3
= (2 + 3) + i(3 - 2)
= 5 + i
z - zi = 5 + i
Set of ordered pairs of z is (2, 3) for -iz is (3, -2) and for z - zi is (5, 1).
Question 1 :
Find the values of the real numbers x and y, if the complex numbers
(3− i)x − (2 − i) y + 2i + 5 and 2x + (−1+ 2i) y + 3+ 2i are equal
Solution :
(3− i)x − (2 − i) y + 2i + 5 = 2x + (−1 + 2i) y + 3+ 2i
3x - ix - 2y + iy + 2i + 5 = 2x - y + 2iy + 3 + 2i
(3x - 2y + 5) + i(-x + y + 2) = (2x - y + 3) + i(2y + 2)
Equating the real and imaginary values.
3x - 2y + 5 = 2x - y + 3
3x - 2x - 2y + y = 3 - 5
x - y = -2 ----(1)
-x + y + 2 = 2y + 2
-x + y - 2y = 2 - 2
-x - y = 0-----(2)
(1) + (2)
-2y = -2
y = 1
By applying the value of y in (1), we get
x - 1 = -2
x = -2 + 1
x = -1
Kindly mail your feedback to v4formath@gmail.com
We always appreciate your feedback.
©All rights reserved. onlinemath4all.com
Nov 05, 24 11:16 AM
Nov 05, 24 11:15 AM
Nov 02, 24 11:58 PM