Side-Side-Side or SSS Congruence Postulate is a rule which can be used to prove the congruence of two triangles.
Explanation :
If three sides of one triangle are congruent to three sides of another triangle, then the two triangles are congruent.
Example 1 :
In the diagram given below, prove that ΔPQW ≅ ΔTSW.
Solution :
Statements PQ ≅ ST PW ≅ TW QW ≅ SW ΔPQW ≅ ΔTSW |
Reasons Given Given Given SSS Congruence Postulate |
Example 2 :
In the diagram given below, prove that ΔABC ≅ ΔFGH.
Solution :
Because AB = 5 in triangle ABC and FG = 5 in triangle FGH,
AB ≅ FG.
Because AC = 3 in triangle ABC and FH = 3 in triangle FGH,
AC ≅ FH.
Use the distance formula to find the lengths of BC and GH.
Length of BC :
BC = √[(x2 - x1)2 + (y2 - y1)2]
Here (x1, y1) = B(-7, 0) and (x2, y2) = C(-4, 5)
BC = √[(-4 + 7)² + (5 - 0)²]
BC = √[3² + 5²]
BC = √[9 + 25]
BC = √34
Length of GH :
GH = √[(x2 - x1)2 + (y2 - y1)2]
Here (x1, y1) = G(1, 2) and (x2, y2) = H(6, 5)
GH = √[(6 - 1)2 + (5 - 2)2]
GH = √[52 + 32]
GH = √[25 + 9]
GH = √34
Conclusion :
Because BC = √34 and GH = √34,
BC ≅ GH
All the three pairs of corresponding sides are congruent. By SSS congruence postulate,
ΔABC ≅ ΔFGH
1. Side-Angle-Side (SAS) Congruence Postulate
If two sides and the included angle of one triangle are equal to two sides and the included angle of another triangle, then the two triangles are congruent.
2. Angle-Side-Angle (ASA) Congruence Postulate
If two angles and the included side of one triangle are equal to two angles and the included side of another triangle, then the two triangles are congruent.
3. Angle-Angle-Side (AAS) Congruence Postulate
If two angles and non-included side of one triangle are equal to two angles and the corresponding non-included side of another triangle, then the two triangles are congruent.
4. Hypotenuse-Leg (HL) Theorem
If the hypotenuse and one leg of a right triangle are equal to the hypotenuse and one leg of another right triangle, then the two right triangles are congruent.
5. Leg-Acute (LA) Angle Theorem
If a leg and an acute angle of one right triangle are congruent to the corresponding parts of another right triangle, then the two right triangles are congruent.
6. Hypotenuse-Acute (HA) Angle Theorem
If the hypotenuse and an acute angle of a right triangle are congruent to the hypotenuse and an acute angle of another right triangle, then the two triangles are congruent.
7. Leg-Leg (LL) Theorem
If the legs of one right triangle are congruent to the legs of another right triangle, then the two right triangles are congruent.
Kindly mail your feedback to v4formath@gmail.com
We always appreciate your feedback.
©All rights reserved. onlinemath4all.com
Dec 26, 24 07:41 AM
Dec 23, 24 03:47 AM
Dec 23, 24 03:40 AM