SOLVE EQUATIONS IN COMPLEX NUMBERS WITH CUBE ROOTS OF UNITY

Question 1 :

Solve the equation z3 + 27 = 0.

Solution :

z3 + 27 = 0

z3   =  -27

z3   =  (-1 ⋅ 3)3

z   =  [(-1 ⋅ (3)3] 1/3

  = 3 (-1)1/3

Polar form of -1 :

-1  =  3[cos π + i sin π]

  =  [cos(2kπ + π) + i sin (2kπ + π)]

  =  [cos π(2k + 1)) + i sin π(2k + 1)]

 (-1)1/3  =  [cos π(2k + 1)) + i sin π(2k + 1)]1/3

 (-1)1/3  =  [cos (π/3)(2k + 1)) + i sin (π/3)(2k + 1)]

k = 0, 1, 2

If k = 0

  =  [cos (π/3)(2k + 1)) + i sin (π/3)(2k + 1)]

  =  3 cis (π/3)

If k = 1

  =  3 [cos π + i sin π]

  =  -3

If k = 2

  =  [cos (5π/3) + i sin (5π/3)]

  =  3 cis (5π/3)

Let us look into the next problem on "Solve Equations in Complex Numbers With Cube Roots of Unity"

Question 2 :

If ω ≠  1 is a cube root of unity, show that the roots of the equation (z −1)3 + 8 = 0 are −1, 1− 2ω, 1− 2ω2

Solution :

(z −1)3 + 8 = 0

(z −1)3 = -8

(z −1) = (-8)1/3 

(z −1) = -2 ⋅ (1) 1/3 

z  =  -2 ⋅ (1) 1/3  + 1

z  =  1 - 2 ⋅ (1) 1/3 

Cube root of 1 are 1, ω, ω2

z  =  1 - 2 ⋅ 1 

z  =  1 - 2  =  -1

z  =  1 - 2 ⋅ ω

 z  =  1 - 2ω

z  =  1 - 2 ⋅ ω2

 z  =  1 - 2ω2

Let us look into the next problem on "Solve Equations in Complex Numbers With Cube Roots of Unity"

Question 3 :

Find the value of

Solution :

If k = 1,

 =  cos 2π/9 + i sin 2π/9 ----(1)

If k = 2,

 =  cos 4π/9 + i sin 4π/9 ----(2)

If k = 3,

 =  cos 6π/9 + i sin 6π/9 ----(3)

If k = 4,

 =  cos 8π/9 + i sin 8π/9 ----(4)

...................

By adding all these, we get

  =  cis (π/9) (2 + 4 + 6 + 8 + 10 + 12 + 14 + 16)

  =  cis (π/9) 2(1 + 2 + 3 + 4 + 5 + 6 + 7 + 8)

  =  cis (72π/9)

  =  cis 8π

  =  cos 8π + i sin 8π

  =  1 + i(0)

  =  1

Question 4 :

If ω ≠  1 is a cube root of unity, show that

(i) (1 − ω + ω2)6 + (1 + ω − ω2)6  =  128.

(ii) (1 − ω)(1 + ω2)(1 + ω4)(1 + ω8).............(1 + ω2^11)  =  1

Solution :

(i) (1 − ω + ω2)6 + (1 + ω − ω2)6  =  128.

L.H.S: 

  =  (1 + ω− ω)6 + (1 + ω − ω2)6 

  =  (- ω − ω)6 + (-ω− ω2)6 

  =  (- 2ω) 6  + (- 2ω2) 6

  =  64 ω6  + 64ω12

  =  64 (ω3)2 64 (ω3)4

  =  64 + 64

  =  128

R.H.S

Hence proved.

(ii) (1 − ω)(1 + ω2)(1 + ω4)(1 + ω8).............(1 + ω2^11)  =  1

L.H.S

(1 − ω)(1 + ω2)(1 + ω4)(1 + ω8)(1 + ω16(1 + ω32(1 + ω64)

(1 + ω128)(1 + ω256)(1 + ω512)(1 + ω1024)(1 + ω2048)

First 2 terms are   =  (1 − ω)(1 + ω2)

3rd and 4th terms :

(1 + ω4)(1 + ω8)  =  (1 + ω)(1 + ω2)

5th and 6th terms :

(1 + ω16)(1 + ω32)  =  (1 + ω)(1 + ω2)

Similarly by grouping these terms, we get 

=  [(1 + ω)(1 + ω2)]6

=  [1 + ω2 ω + ω3 ]6

=  [0 ω3 ]6

=  1

Hence proved.

Question 5 :

If z = 2 - 2i, find rotation of z by θ radians in the counter clock wise direction about the origin when

(i)  θ  =  π/3    (ii) θ  =  2π/3    (iii) θ  =  3π/2

Solution :

z = 2 - 2i 

α  = tan-1|(-2)/2|

α  = tan-1|(-2)/2|

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. Digital SAT Math Problems and Solutions (Part - 62)

    Nov 05, 24 11:16 AM

    Digital SAT Math Problems and Solutions (Part - 62)

    Read More

  2. SAT Math Resources (Videos, Concepts, Worksheets and More)

    Nov 05, 24 11:15 AM

    SAT Math Resources (Videos, Concepts, Worksheets and More)

    Read More

  3. Worksheet on Proving Trigonometric Identities

    Nov 02, 24 11:58 PM

    tutoring.png
    Worksheet on Proving Trigonometric Identities

    Read More