SOLVING QUADRATIC EQUATION BY GRAPHING

In this section, you will learn how to solve a quadratic using its graph. 

To solve quadratic equation by graphing, we have to write the given quadratic equation as a quadratic function as shown below.

y  =  ax2 + bx + x

Now, we can graph the above quadratic function by making the table of values. 

If the graph intersects x-axis in two points, then the quadratic equation has two roots. 

If the graph intersects (touches) x-axis in one point, then the quadratic equation has only one root.

If the graph does not intersect x-axis, then the quadratic equation has no real root. 

Solved Examples

Example 1 :

Solve the following quadratic equation by graphing : 

x2 + 6x + 7 = 0

Solution :

Let y  =  x2 + 6x + 7 -----(1)

Find the vertex of the quadratic function :

Comparing x2 + 6x + 7 = 0 with ax2 + bx + c = 0,  

a  =  1, b  =  6 and c  =  -7

x-coordinate of the vertex  =  -b/2a

x  =  -6/2(1)

x  =  -6/2

x  =  -3

Substitute x = -3 in (1) to find the y-coordinate of the vertex. 

y  =  (-3)2 + 6(-3) - 7

y  =  9 - 18 - 7

y  =  -16

So, the vertex is (-3, -16)

Make a table of values to find other points to sketch the graph.

x

-8

-6

-4

-3

-2

0

2

y

9

-7

-15

-16

-15

-7

9

Set of ordered pairs :

(-8, 9)

(-6, -7)

(-4, -15)

(-3, -16)

(-2, -15)

(0, -7)

(2, 9)

The graph above intersects intersects x-axis at 

x  =  -7  and  x  =  1

So, the solution is {-7, 1}. 

Example 2 :

Solve the following quadratic equation by graphing : 

x2 + x + 4  =  0

Solution :

Let y  =  x2 + x + 4 -----(1)

Find the vertex of the quadratic function :

Comparing x2 + x + 4 = 0 with ax2 + bx + c = 0,  

a  =  1, b  =  1 and c  =  4

x-coordinate of the vertex  =  -b/2a

x  =  -1/2(1)

x  =  -1/2

Substitute x = -1/2 in (1) to find the y-coordinate of the vertex. 

y  =  (-1/2)2 + (-1/2) + 4

y  =  1/4 - 1/2 + 4

y  =  (1 - 2 + 16)/4

y  =  15/4  

So, the vertex is (-1/2, 15/4)

Make a table of values to find other points to sketch the graph.

x

-1

0

1

2

y

6

4

4

6

Set of ordered pairs :

(-1, 6)

(0, 4)

(1, 4)

(2, 6)

The graph above does not intersect x-axis. 

So, there is no real solution for the given quadratic equation. 

Example 3 :

Solve the following quadratic equation by graphing : 

x2 - 7x + 6  =  0

Solution :

Step 1 :

Let y  =  x2 - 7x + 6 -----(1)

Find the vertex of the quadratic function :

Comparing x2 - 7x + 6 = 0 with ax2 + bx + c = 0,  

a  =  1, b  =  -7 and c  =  6

x-coordinate of the vertex  =  -b/2a

x  =  -(-7)/2(1)

x  =  7/2

Substitute x = 7/2 in (1) to find the y-coordinate of the vertex. 

y = (7/2)2 - 7(7/2) + 6

y = 49/4 - 49/2 + 6

y  =  (49 - 98 + 24)/4

y  =  -25/4  

So, the vertex is (7/2, -25/4)

Make a table of values to find other points to sketch the graph.

x

-2

-1

0

1

2

y

-4

14

6

0

-4

Set of ordered pairs :

(-2, -4)

(-1, 14)

(0, 6)

(1, 0)

(2, -4)

The graph above intersects intersects x-axis at 

x  =  1  and  x  =  6

So, the solution is {1, 6}.

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. SAT Math Resources (Videos, Concepts, Worksheets and More)

    Nov 16, 24 08:15 AM

    SAT Math Resources (Videos, Concepts, Worksheets and More)

    Read More

  2. Digital SAT Math Problems and Solutions (Part - 71)

    Nov 16, 24 08:03 AM

    digitalsatmath56.png
    Digital SAT Math Problems and Solutions (Part - 71)

    Read More

  3. Digital SAT Math Problems and Solutions (Part - 70)

    Nov 15, 24 07:12 PM

    Digital SAT Math Problems and Solutions (Part - 70)

    Read More