SOLVING QUADRATIC EQUATIONS BY COMPLETING THE SQUARE WORKSHEET

Solve each of the following quadratic equations by completing the square method.

Problem 1 :

9x2 - 12x + 4  =  0

Problem 2 :

x2 - 6x - 16  =  0

Problem 3 :

x2 - 5x + 6  =  0

Problem 4 :

(5x + 7)/(x - 1)  =  3x + 2

Answers

Problem 1 :

9x2 - 12x + 4  =  0

Solution :

Step 1 :

In the given quadratic equation 9x2 - 12x + 4 = 0, divide the complete equation by 9 (coefficient of x2). 

  x2 - (12/9)x + (4/9)  =  0

x2 - (4/3)x + (4/9)  =  0

Step 2 :

Subtract 4/9 from each side. 

x2 - (4/3)x  =  - 4/9

Step 3 :

In the result of step 2, write the "x" term as a multiple of 2. 

Then, 

x2 - (4/3)x  =  - 4/9

x2 - 2(x)(2/3)  =  - 4/9

Step 4 :

Now add (2/3)2 to each side to complete the square on the left side of the equation.  

Then, 

x2 - 2(x)(2/3) + (2/3)2  =  - 4/9 + (2/3)2

(x - 2/3)2  =  - 4/9 + 4/9

(x - 2/3)2  =  0

Take square root on both sides. 

(x - 2/3)2  =  0

x - 2/3  =  0

Add 2/3 to each side. 

x  =  2/3

So, the solution is 2/3. 

Problem 2 :

x2 - 6x - 16  =  0

Solution :

Step 1 :

In the quadratic equation x2 - 6x - 16 = 0, the coefficient of x2 is 1. 

So, we have nothing to do in this step. 

Step 2 :

Add 16 to each side of the equation x2 - 6x - 16  =  0.

x2 - 6x  =  16

Step 3 :

In the result of step 2, write the "x" term as a multiple of 2. 

Then, 

x2 - 6x  =  16

x2 - 2(x)(3)  =  16

Step 4 :

Now add 32 to each side to complete the square on the left side of the equation.  

Then, 

x2 - 2(x)(3) + 32  =  16 + 32

(x - 3)2  =  16 + 9

(x - 3)2  =  25

Take square root on both sides. 

(x - 3)2  =  √25

x - 3  =  ±5

x - 3  =  -5  or  x - 3  =  5

x  =  -2  or  x  =  8

So, the solution is {-2, 8}. 

Problem 3 :

x2 - 5x + 6  =  0

Solution :

Step 1 :

In the quadratic equation x2 - 5x + 6 = 0, the coefficient of x2 is 1. 

So, we have nothing to do in this step. 

Step 2 :

Subtract 6 from each side of the equation x2 - 5x + 6 = 0.

x2 - 5x  =  -6

Step 3 :

In the result of step 2, write the "x" term as a multiple of 2. 

Then, 

x2 - 5x  =  -6

x2 - 2(x)(5/2)  =  -6

Step 4 :

Now add (5/2)2 to each side to complete the square on the left side of the equation.  

Then, 

x2 - 2(x)(5/2) + (5/2)2  =  -6 + (5/2)2

(x - 5/2)2  =  -6 + 25/4

(x - 5/2)2  =  -24/4 + 25/4

(x - 5/2)2  =  (-24 + 25)/4

(x - 5/2)2  =  1/4

Take square root on both sides. 

(x - 5/2)2  =  √(1/4)

x - 5/2  =  ±1/2

x - 5/2  =  -1/2  or  x - 5/2  =  1/2

x  =  -1/2 + 5/2  or  x  =  1/2 + 5/2

x  =  4/2  or  x  =  6/2

x  =  2  or  x  =  3  

So, the solution is {2, 3}. 

Problem 4 :

(5x + 7)/(x - 1)  =  3x + 2

Solution :

Write the given quadratic equation in the form :

ax2 + bx + c  =  0

Then, 

(5x + 7)/(x - 1)  =  3x + 2

Multiply each side by (x - 1). 

5x + 7  =  (3x + 2)(x - 1)

Simplify. 

5x + 7  =  3x2 - 3x + 2x - 2

5x + 7  =  3x2 - x - 2

0  =  3x2 - 6x - 9

or

3x2 - 6x - 9  =  0

Divide the entire equation by 3.

x2 - 2x - 3  =  0

Step 1 :

In the quadratic equation x2 - 2x - 3 = 0, the coefficient of x2 is 1. 

So, we have nothing to do in this step. 

Step 2 :

Add 3 to each side of the equation x2 - 2x - 3 = 0.

x2 - 2x  =  3

Step 3 :

In the result of step 2, write the "x" term as a multiple of 2. 

Then, 

x2 - 2x  =  3

x2 - 2(x)(1)  =  3

Step 4 :

Now add 12 to each side to complete the square on the left side of the equation.  

Then, 

x2 - 2(x)(1) + 12  =  3 + 12

(x - 1)2  =  3 + 1

(x - 1)2  =  4

Take square root on both sides. 

(x - 1)2  =  4

x - 1  =  ±2

x - 1  =  -2  or  x - 1  =  2

x  =  -1  or  x  =  3

So, the solution is {-1, 3}. 

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. Digital SAT Math Problems and Solutions (Part - 62)

    Nov 05, 24 11:16 AM

    Digital SAT Math Problems and Solutions (Part - 62)

    Read More

  2. SAT Math Resources (Videos, Concepts, Worksheets and More)

    Nov 05, 24 11:15 AM

    SAT Math Resources (Videos, Concepts, Worksheets and More)

    Read More

  3. Worksheet on Proving Trigonometric Identities

    Nov 02, 24 11:58 PM

    tutoring.png
    Worksheet on Proving Trigonometric Identities

    Read More