SQUARE OF A BINOMIAL

An algebraic expression which contains exactly two terms is called binomial. The two terms in a binomial will either be addition or subtraction.

Examples :

x + 2, x - 2, 3p + 2q

Consider the binomial (a + b).

The square of the binomial (a + b) is (a + b) raised to the power 2. That is

(a + b)2

Since the exponent of (a + b)2 is 2, we can write (a + b) twice and multiply to get the expansion of (a + b)2.

Expansion of (a + b)2 :

(a + b)2 = (a + b)(a + b)

Use the FOIL method to multiply the two binomials on the right side.

(a + b)2 = a ⋅ a + ab + ab + b ⋅ b

(a + b)2 = a2 + 2ab + b2

From the above working, it is clear that the expansion of (a + b)2 is equal to sum of the squares of the two terms a and b and two times the product of the two terms a and b.

Expansion of (a - b)2 :

(a - b)2 = a2 + 2(a)(-b) + b2

(a - b)2 = a2 - 2ab + b2

The following expansions of the squares of two binomials are considered to be algebraic identities.

(a + b)2 = a2 + 2ab + b2

(a - b)2 = a2 - 2ab + b2

It will be helpful to remember the above two algebraic identities to solve problems on expanding the square of a binomial.

Example 1 :

Expand :

(x + 2)

Solution :

(x + 2)is in the form of (a + b)2

Comparing (a + b)and (x + 2)2, we get

a = x

b = 2

Write the formula / expansion for (a + b)2.

(a + b)2 = a2 + 2ab + b2

Substitute x for a and 2 for b.

(x + 2)2 = x2 + 2(x)(2) + 32

(x + 2)2 = x2 + 4x + 9

So, the expansion of (x + 2)2 is

x2 + 4x + 9

Example 2 :

Expand :

(x - 5)2

Solution :

(x - 5)is in the form of (a - b)2

Comparing (a - b)and (x - 5)2, we get

a = x

b = 5

Write the formula / expansion for (a - b)2.

(a - b)2 = a2 - 2ab + b2

Substitute x for a and 5 for b. 

(x - 5)2 = x2 - 2(x)(5) + 52

(x - 5)2 = x2 - 10x + 25

So, the expansion of (x - 5)2 is

x2 - 10x + 25

Example 3 :

Expand : 

(5x + 3)

Solution :

(5x + 3)is in the form of (a + b)2

Comparing (a + b)and (5x + 3)2, we get

a = 5x

b = 3

Write the expansion for (a + b)2.

(a + b)2 = a2 + 2ab + b2

Substitute 5x for a and 3 for b. 

(5x + 3)2 = (5x)2 + 2(5x)(3) + 32

(5x + 3)2 = 25x2 + 30x + 9

So, the expansion of (5x + 3)2 is

25x2 + 30x + 9

Example 4 :

Expand : 

(5x - 3)

Solution :

(5x - 3)is in the form of (a - b)2

Comparing (a - b)and (5x - 3)2, we get

a = 5x

b = 3

Write the expansion for (a - b)2.

(a - b)2 = a2 - 2ab + b2

Substitute 5x for a and 3 for b. 

(5x - 3)2 = (5x)2 - 2(5x)(3) + 32

(5x - 3)2 = 25x2 - 30x + 9

So, the expansion of (5x - 3)2 is

25x2 - 30x + 9

Example 5 :

Expand : 

(x + 1/x)

Solution :

(x - 1/x)is in the form of (a - b)2

Comparing (a - b)and (x + 1/x)2, we get

a = x

b = 1/x

Write the expansion for (a + b)2.

(a + b)2 = a2 + 2ab + b2

Substitute x for a and 1/x for b. 

(x + 1/x)2 = x2 - 2(x)(1/x) + (1/x)2

(x + 1/x)2 = x2 + 2 + 1/x2

So, the expansion of (x + 1/x)2 is

x2 + 2 + 1/x2

Example 6 :

Expand : 

(4x - 1/2)

Solution :

(4x - 1/2) is in the form of (a - b)2

Comparing (a - b)and (4x - 1/2)2, we get

a = 4x

b = 1/2

Write the expansion for (a + b)2.

(a - b)2 = a2 - 2ab - b2

Substitute 4x for a and 1/2 for b. 

(4x - 1/2)2 = (4x)2 - 2(4x)(1/2) + (1/2)2

(4x - 1/2)2 = 16x2 - 4x + 1/22

(4x - 1/2)2 = 16x2 - 4x + 1/4

So, the expansion of (4x - 1/2)2 is

16x2 - 4x + 1/4

Example 7 :

If a + b = 7 and a2 + b2 = 29, then find the value of ab. 

Solution :

To get the value of ab, we can use the formula or expansion of (a + b)2.

Write the formula / expansion for (a + b)2.

(a + b)2 = a2 + 2ab + b2

or

(a + b)2 = a2 + b2 + 2ab

Substitute 7 for (a + b)  and 29 for (a2 + b2).

72 = 29 + 2ab

49 = 29 + 2ab

Subtract 29 from each side. 

20 = 2ab

Divide each side by 2. 

10 = ab

So, the value of ab is 10. 

Example 8 :

If a - b = 3 and a2 + b2 = 29, then find the value of ab. 

Solution :

To get the value of ab, we can use the formula or expansion of (a - b)2.

Write the formula / expansion for (a - b)2.

(a - b)2 = a2 - 2ab + b2

or

(a - b)2 = a2 + b- 2ab

Substitute 3 for (a - b)  and 29 for (a2 + b2).

32 = 29 - 2ab

9 = 29 - 2ab

Subtract 29 from each side. 

-20 = -2ab

Divide each side by -2. 

10 = ab

So, the value of ab is 10. 

Example 9 :

Find the value of :

(√2 + 1/√2)2

Solution :

 (√2 + 1/√2)2 is in the form of (a + b)2

Comparing (a + b)and (√2 + (1/√2)2, we get

a = √2

b = 1/√2

Write the expansion for (a + b)2.

(a + b)2 = a2 + 2ab + b2

Substitute √2 for a and 1/√2 for b. 


(√2 + 1/√2)
2 = (√2)2 + 2(√2)(1/√2) + (1/√2)2

(√2 + 1/√2)2 = 2 + 2 + 1/2

(√2 + 1/√2)2 = 9/2

So, the value of (√2 + 1/√2)2 is

9/2

Example 10 :

Find the value of :

(√2 - 1/√2)2

Solution :

 (√2 - 1/√2)2 is in the form of (a - b)2

Comparing (a - b)and (√2 - 1/√2)2, we get

a = √2

b = 1/√2

Write the formula / expansion for (a - b)2.

(a - b)2 = a2 - 2ab + b2

Substitute √2 for a and 1/√2 for b. 


(√2 - 1/√2)
2 = (√2)2 - 2(√2)(1/√2) + (1/√2)2

(√2 - 1/√2)2 = 2 - 2 + 1/2

(√2 - 1/√2)2 = 1/2

So, the value of (√2 - 1/√2)is

1/2

Example 11 :

Find the value of :

(105)2  

Solution :

Instead of multiplying 105 by 105 to get the value of (105)2, we can use the algebraic formula for (a + b)2 and find the value of (105)easily.

Write (105)in the form of (a + b)2.

(105)2 = (100 + 5)2

Write the expansion for (a + b)2.

(a + b)2 = a2 + 2ab + b2

Substitute 100 for a and 5 for b. 

(100 + 5)2 = (100)2 + 2(100)(5) + (5)2

(100 + 5)2 = 10000 + 1000 + 25

(105)2 = 11025

So, the value of (105)2 is

11025

Example 12 :

Find the value of :

(95)2  

Solution :

Instead of multiplying 95 by 95 to get the value of (95)2, we can use the algebraic formula for (a - b)and find the value of (95)easily.

Write (95)in the form of (a - b)2.

(95)2 = (100 - 5)2

Write the formula / expansion for (a - b)2.

(a - b)2 = a2 - 2ab + b2

Substitute 100 for a and 5 for b. 

(100 - 5)2 = (100)2 - 2(100)(5) + (5)2

(100 - 5)2 = 10000 - 1000 + 25

(95)2 = 9025

So, the value of (95)2 is

9025

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. SAT Math Resources (Videos, Concepts, Worksheets and More)

    Jan 04, 25 10:29 AM

    SAT Math Resources (Videos, Concepts, Worksheets and More)

    Read More

  2. Digital SAT Math Problems and Solutions (Part - 96)

    Jan 04, 25 10:26 AM

    digitalsatmath86.png
    Digital SAT Math Problems and Solutions (Part - 96)

    Read More

  3. Simplifying Complex Fractions Problems and Solutions

    Jan 04, 25 12:31 AM

    Simplifying Complex Fractions Problems and Solutions

    Read More