Standard Form of a Number :
Writing a number in standard form follows certain rules. Any number that is written as a decimal number between 1.0 and 10.0, multiplied by a power of 10, is said to be in standard form.
Examples :
1.23 x 102
3.5 x 10-3
2.0 x 105
Expanded Form of a Number :
To write an ordinary number in expanded form, each digit in the ordinary number has to be multiplied by the corresponding place value.
Example :
758 = 7x100 + 5x10 + 8x1
= 700 + 50 + 8
The expanded form of 758 is 700 + 50 + 8.
Examples 1-10 : Write the given number in expanded form.
Example 1 :
6523
Solution :
Multiply each digit of 6523 by its corresponding place value.
6523 = 6x1000 + 5x100 + 2x10 + 3x1
= 6000 + 500 + 20 + 3
Example 2 :
758.23
Solution :
Multiply each digit of 758.23 by its corresponding place value.
758.23 :
= 7x100 + 5x10 + 8x1 + 2x¹⁄₁₀ + 3x¹⁄₁₀₀
= 700 + 50 + 8 + ²⁄₁₀ + ³⁄₁₀₀
= 700 + 50 + 8 + 0.2 + 0.03
Example 3 :
652973
Solution :
652973 = 600000 + 50000 + 2000 + 900 + 70 + 3
Example 4 :
0.287
Solution :
0.287 = 0.2 + 0.08 + 0.007
Example 5 :
0.00807
Solution :
0.00807 = 0.008 + 0.00007
Example 6 :
2.53794 x 105
Solution :
2.53794 x 105 = 253794
= 200000 + 50000 + 3000 + 700 + 90 + 4
Example 7 :
3.4567 x 102
Solution :
3.4567 x 102 = 345.67
= 300 + 40 + 5 + 0.6 + 0.07
Example 8 :
3.8 x 103
Solution :
3.8 x 103 = 3800
= 3000 + 800
Example 9 :
7.4 x 10-5
Solution :
7.4 x 10-5 = 0.000074
= 0.00007 + 0.000004
Example 10 :
2.5678 x 10-3
Solution :
2.5678 x 10-3 = 0.0025678
= 0.002 + 0.0005 + 0.00006 + 0.000007 + 0.0000008
Examples 11-23 : Write the given number in standard form.
Example 11 :
900 + 70 + 2
Solution :
900 + 70 + 2 = 972
In 972, there is no decimal point. So, assume there is decimal point at the end.
= 972. ----(1)
Take decimal point right after the first nonzero digit.
= 9.72 ----(2)
Compare (1) and (2), count the number of digits that the decimal point is shifted. The decimal point is shifted two digits to the left. Take 2 as exponent for 10 and multiply 9.72 by 102 to write the given number in standard form.
900 + 70 + 2 = 9.72 x 102
Example 12 :
4000 + 200 + 30 + 5 + 0.9 + 0.01
Solution :
4000 + 200 + 30 + 5 + 0.9 + 0.01 = 4235.91
= 4.23591 x 103
Example 13 :
0.0003 + 0.00005 + 0.000009
Solution :
0.0003 + 0.00005 + 0.000009 = 0.000359
= 0.000359 ----(1)
Take decimal point right after the first nonzero digit.
= 3.59 ----(2)
Compare (1) and (2), count the number of digits that the decimal point is shifted. The decimal point is shifted four digits to the right. Take -4 as exponent for 10 and multiply 3.592 by 10-4 to write the given number in standard form.
0.0003 + 0.00005 + 0.000009 = 3.59 x 10-4
Example 14 :
2 + 0.5
Solution :
2 + 0.5 = 2.5
2 + 0.5 = 2.5 x 100
Example 15 :
30 + 7 + 0.03
Solution :
30 + 7 + 0.03 = 37.03
= 3.703 x 101
Example 16 :
50000 + 7000 + 900 + 20 + 3
Solution :
50000 + 7000 + 900 + 20 + 3 = 57923
= 5.7923 x 104
Example 17 :
8000 + 600 + 4
Solution :
8000 + 600 + 4 = 8604
= 8.604 x 103
Example 18 :
9000 + 1 + 0.003 + 0.00004
Solution :
9000 + 1 + 0.003 + 0.00004 = 9001.00304
= 9.00100304 x 103
Example 19 :
0.1 + 0.002 + 0.00003
Solution :
0.1 + 0.002 + 0.00003 = 0.10203
= 1.0203 x 10-1
Example 20 :
0.02 + 0.0005 + 0.000007
Solution :
0.02 + 0.0005 + 0.000007 = 0.020507
= 2.0507 x 10-2
Example 21 :
7x10000 + 4x1000 + 3x10 + 9x1
Solution :
7x10000 + 4x1000 + 3x10 + 9x1 = 70000 + 4000 + 30 + 9
= 74039
= 7.4039 x 104
Example 22 :
3x10-1 + 5x10-2 + 1x10-3 + 4x10-4
Solution :
3x10-1 + 5x10-2 + 1x10-3 + 4x10-4 :
= 3x¹⁄₁₀ + 5x¹⁄₁₀₀ + 1x¹⁄₁₀₀₀ + 4x¹⁄₁₀₀₀₀
= ³⁄₁₀ + ⁵⁄₁₀₀ + ¹⁄₁₀₀₀ + ⁴⁄₁₀₀₀₀
= 0.3 + 0.05 + 0.001 + 0.0004
= 0.3514
= 3.514 x 10-1
Example 23 :
9x102 + 8x101 + 7x100 + 6x10-1 + 5x10-2
Solution :
9x102 + 8x101 + 7x100 + 6x10-1 + 5x10-2 :
= 9x100 + 8x10 + 7x1 + 6x¹⁄₁₀ + 5x¹⁄₁₀₀
= 900 + 80 + 7 + ⁶⁄₁₀ + ⁵⁄₁₀₀
= 900 + 80 + 7 + 0.6 + 0.05
= 987.65
= 9.8765 x 102
Kindly mail your feedback to v4formath@gmail.com
We always appreciate your feedback.
©All rights reserved. onlinemath4all.com
Dec 30, 24 07:48 PM
Dec 30, 24 07:47 PM
Dec 30, 24 12:57 AM