Sum Difference Product and Quotient of Functions :
Here we are going to see, how to find sum, difference product and quotient of functions.
If p and q are nonzero polynomials, then
deg(p + q) ≤ maximum{deg p, deg q}
and
deg(p − q) ≤ maximum{deg p, deg q}.
Degree of the product of two polynomials If p and q are nonzero polynomials, then
deg(pq) = deg p + deg q.
Question 1 :
Suppose
p(x) = x2 + 5x + 2, q(x) = 2x3 − 3x + 1, s(x) = 4x3 − 2
write the indicated expression as a sum of terms, each of which is a constant times a power of x.
(i) (4p + 5q)(x) (ii) (pq)(x) (iii) (ps)(x) (iv) (p(x))2
(v) (q(x))2 (vi) (p(x))2s(x)
Solution :
(i) (4p + 5q)(x) = 4 p(x) + 5 q(x)
= 4(x2 + 5x + 2) + 5(2x3 − 3x + 1)
= 4x2 + 20x + 8 + 10x3 − 15x + 5
= 10x3 + 4x2 − 15x + 20x + 5 + 8
= 10x3 + 4x2 + 5x + 13
(ii) (pq)(x)
p(x) = x2 + 5x + 2, q(x) = 2x3 − 3x + 1
(pq)(x) = p(x) ⋅ q(x)
= (x2 + 5x + 2) (2x3 − 3x + 1)
= x2 (2x3 − 3x + 1) + 5x (2x3 − 3x + 1) + 2 (2x3 − 3x + 1)
= 2x5 - 3x3 + x2 + 10x4 - 15x2 + 5x + 4x3 - 6x + 2
= 2x5 + 10x4 - 3x3 + 4x3 + x2 - 15x2 + 5x - 6x + 2
= 2x5 + 10x4 + x3 - 14x2 x + 2
(iii) (ps)(x)
= p(x) ⋅ s(x)
p(x) = x2 + 5x + 2 s(x) = 4x3 − 2
= (x2 + 5x + 2) ⋅ (4x3 − 2)
= x2(4x3 − 2) + 5x(4x3 − 2) + 2(4x3 − 2)
= 4x5 - 2x2 + 20x4 - 10x + 8x3 - 4
= 4x5 + 20x4 + 8x3- 2x2 - 10x - 4
(iv) (p(x))2
= (x2 + 5x + 2)2
= (x2)2 + (5x)2 + 22 + 2 x2(5x) + 2(5x) 2 + 2 (2)x2
= x4 + 25x2 + 4 + 10x3 + 20x + 4x2
= x4 + 10x3 + 29x2 + 20x + 4
(v) (q(x))2
= (2x3 − 3x + 1)2
= (2x3)2 + (-3x)2 + 12 + 2 (2x3)(-3x) + 2(-3x) 1 + 2(2x3)
= 4x6 + 9x2 + 1 - 12x4 - 6x + 4x3
= 4x6 - 12x4 + 4x3 + 9x2 - 6x + 1
(vi) (p(x))2s(x)
= (x4 + 10x3 + 29x2 + 20x + 4)(4x3 − 2)
= x4(4x3−2)+10x3(4x3−2)+29x2(4x3−2)+20x(4x3−2)+ 4(4x3−2)
= 4x7−2x4+40x6−20x3 + 116x5 - 58x2 + 80x4 - 40x + 16x3 - 8
= 4x7+40x6+ 116x5 −2x4 + 80x4 + 16x3−20x3 - 58x2 - 40x - 8
= 4x7+40x6+ 116x5 + 78x4 - 4x3 - 58x2 - 40x - 8
Kindly mail your feedback to v4formath@gmail.com
We always appreciate your feedback.
©All rights reserved. onlinemath4all.com
Nov 12, 24 10:36 AM
Nov 12, 24 10:06 AM
Nov 10, 24 05:05 AM