SUM DIFFERENCE PRODUCT AND QUOTIENT OF FUNCTIONS

Sum Difference Product and Quotient of Functions :

Here we are going to see, how to find sum, difference product and quotient of functions.

If p and q are nonzero polynomials, then

deg(p + q) ≤ maximum{deg p, deg q}

and

deg(p − q) ≤ maximum{deg p, deg q}.

Degree of the product of two polynomials If p and q are nonzero polynomials, then

deg(pq) = deg p + deg q.

Question 1 :

Suppose

p(x) = x2 + 5x + 2, q(x) = 2x3 − 3x + 1, s(x) = 4x3 − 2

write the indicated expression as a sum of terms, each of which is a constant times a power of x.

(i)  (4p + 5q)(x)     (ii) (pq)(x)     (iii)  (ps)(x)    (iv)  (p(x))2

(v)  (q(x))2      (vi)  (p(x))2s(x)

Solution :

(i)  (4p + 5q)(x)  =  4 p(x) + 5 q(x)

  =  4(x2 + 5x + 2) + 5(2x3 − 3x + 1) 

  =  4x2 + 20x + 8 + 10x3 − 15x + 5

  =  10x3  4x2  − 15x + 20x + 5 + 8

  =  10x 4x2  + 5x + 13

(ii) (pq)(x)

p(x) = x2 + 5x + 2, q(x) = 2x3 − 3x + 1

(pq)(x)  =  p(x) ⋅ q(x)

  =  (x2 + 5x + 2) (2x3 − 3x + 1)

  =  x2 (2x3 − 3x + 1) + 5x (2x3 − 3x + 1) + 2 (2x3 − 3x + 1)

  =  2x5 - 3x3 + x2 + 10x4 - 15x2 + 5x + 4x3 - 6x + 2

  =  2x5 + 10x- 3x3 + 4x3 + x2  - 15x2 + 5x - 6x + 2

  =  2x5 + 10x+ x3 - 14x2 x + 2

(iii)  (ps)(x) 

  =  p(x) ⋅ s(x)

p(x) = x2 + 5x + 2  s(x) = 4x3 − 2

  =  (x2 + 5x + 2)  (4x3 − 2)

  =  x2(4x3 − 2) + 5x(4x3 − 2) + 2(4x3 − 2)

  =  4x5 - 2x2 + 20x4 - 10x + 8x3 - 4

  =  4x5 + 20x4 + 8x3- 2x- 10x - 4

(iv)  (p(x))2

  =  (x2 + 5x + 2)2

  =  (x2)2 + (5x)2 + 22 + 2 x2(5x) + 2(5x) 2 + 2 (2)x2

  =  x4 + 25x2 + 4 + 10x3 + 20x + 4x2

  =  x4 + 10x+ 29x2 + 20+ 4

(v)  (q(x))2   

  =  (2x3 − 3x + 1)2

  =  (2x3)2 + (-3x)2 + 12 + 2 (2x3)(-3x) + 2(-3x) 1 + 2(2x3)

  =  4x6 + 9x2 + 1 - 12x4 - 6x + 4x3

  =  4x6 - 12x+ 4x+ 9x2 - 6x + 1

 (vi)  (p(x))2s(x)

  =  (x4 + 10x+ 29x2 + 20+ 4)(4x3 − 2)

=  x4(4x3−2)+10x3(4x3−2)+29x2(4x3−2)+20x(4x3−2)+ 4(4x3−2)

=  4x7−2x4+40x6−20x3 + 116x5 - 58x2 + 80x4 - 40x + 16x3 - 8

=  4x7+40x6+ 116x −2x+ 80x4 + 16x3−20x- 58x2 - 40x - 8

=  4x7+40x6+ 116x + 78x4 - 4x- 58x2 - 40x - 8

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. SAT Math Resources (Videos, Concepts, Worksheets and More)

    Nov 12, 24 10:36 AM

    SAT Math Resources (Videos, Concepts, Worksheets and More)

    Read More

  2. Digital SAT Math Problems and Solutions (Part - 67)

    Nov 12, 24 10:06 AM

    Digital SAT Math Problems and Solutions (Part - 67)

    Read More

  3. Digital SAT Math Problems and Solutions (Part - 30)

    Nov 10, 24 05:05 AM

    digitalsatmath24.png
    Digital SAT Math Problems and Solutions (Part - 30)

    Read More