Problem 1 :
Find the value of
13 + 23 + 33 + ........ + 173
Problem 2 :
Find the value of
83 + 103 + 113 + ........ + 213
Problem 3 :
Find the value of
33 + 63 + 93 + ........ + 453
Problem 4 :
Find the sum of
2 + 16 + 54 + ........ + to 12 terms
Problem 5 :
Find the sum of
3 + 24 + 81 + ........ + 6591
Problem 6 :
Find the average of cubes first 10 natural numbers.
Problem 7 :
If 1 + 2 + 3 + ........ + k = 325, then find
13 + 23 + 33 + ........ + k3
Problem 8 :
If 13 + 23 + 33 + ........ + k3 = 44100, then find
1 + 2 + 3 + ........ + k
Problem 9 :
How many terms of the series 13 + 23 + 33 + ........ should be taken to get the sum 14400?
Problem 10 :
The sum of the squares of the first n natural numbers is 285, while the sum of their cubes is 2025. Find the value of n.
1. Answer :
= 13 + 23 + 33 + ........ + 173
Using 13 + 23 + 33 + ........ + n3 = [n(n + 1)/2]2,
= [17(17 + 1)/2]2
= [17(18)/2]2
= [17(9)]2
= 1532
= 23409
2. Answer :
83 + 103 + 113 + ........ + 213 :
= (13 + 23 + 33 + ........ + 213) - (13 + 23 + 33 + ........ + 73)
Using 13 + 23 + 33 + ........ + n3 = [n(n + 1)/2]2,
= [21(21 + 1)/2]2 - [7(7 + 1)/2]2
= [21(22)/2]2 - [7(8)/2]2
= [21(11)]2 - [7(4)]2
= 2312 - 282
= 53361 - 784
= 52577
3. Answer :
= 33 + 63 + 93 + ........ + 453
= (3x1)3 + (3x2)3 + (3x3)3 + ........ + (3x15)3
= 3313 + 3323 + 3333 + ........ + 33153
= 33(13 + 23 + 33 + ........ + 153)
Using 13 + 23 + 33 + ........ + n3 = [n(n + 1)/2]2,
= 33[15(15 + 1)/2]2
= 33[15(16)/2]2
= 33[15(8)]2
= 27(120)2
= 27(14400)
= 388800
4. Answer :
2 + 16 + 54 + ........ + to 12 terms
= 2(1 + 8 + 27 + ........ to 12 terms)
= 2(13 + 23 + 33 + ........ to 12 terms)
= 2(12 + 22 + 32 + ........ + 122)
Using 13 + 23 + 33 + ........ + n3 = [n(n + 1)/2]2,
= 2[12(12 + 1)/2]2
= 2[12(13)/2]2
= 2[6(13)]2
= 2(78)2
= 2(6084)
= 12168
5. Answer :
3 + 24 + 81 + ........ + 6591 :
= 3(1 + 8 + 27 + ........ + 2197)
= 3(13 + 23 + 33 + ........ + 133)
Using 13 + 23 + 33 + ........ + n3 = [n(n + 1)/2]2,
= 3[13(13 + 1)/2]2
= 3[13(14)/2]2
= 3[6(7)]2
= 3(42)2
= 3(1764)
= 5292
6. Answer :
Using 13 + 23 + 33 + ........ + n3 = [n(n + 1)/2]2, to find the sum of squares first 10 natural numbers.
13 + 23 + 33 + ........ + 103 :
= [10(10 + 1)/2]2
= [10(11)/2]2
= [5(11)]2
= 552
= 3025
Average of cubes first 10 natural numbers :
= (Sum of cubes first 10 natural numbers)/10
= 3025/10
= 302.5
7. Answer :
1 + 2 + 3 + ........ + k = 325
Using 1 + 2 + 3 + ........ + n = n(n + 1)/2,
k(k + 1)/2 = 325
Using 13 + 23 + 33 + ........ + n3 = [n(n + 1)/2]2,
13 + 23 + 33 + ........ + k3 = [k(k + 1)/2]2
Substitute k(k + 1)/2 = 325,
13 + 23 + 33 + ........ + k3 = 3252
13 + 23 + 33 + ........ + k3 = 105625
8. Answer :
13 + 23 + 33 + ........ + k3 = 44100
Using 13 + 23 + 33 + ........ + n3 = [n(n + 1)/2]2,
[k(k + 1)/2]2 = 44100
[k(k + 1)/2]2 = 2102
k(k + 1)/2 = 210
Using 1 + 2 + 3 + ........ + n = n(n + 1)/2,
1 + 2 + 3 + ........ + k = 210
9. Answer :
Let n be the number of terms to be taken to get the sum 14400.
13 + 23 + 33 + ........ to n terms = 14400
13 + 23 + 33 + ........ + n3 = 14400
[n(n + 1)/2]2 = 14400
[n(n + 1)/2]2 = 1202
n(n + 1)/2 = 120
Multiply each side by 2.
n(n + 1) = 240
n2 + n = 240
n2 + n - 240 = 0
Factor and solve.
n2 + 16n - 15n - 240 = 0
n(n + 16) - 15(n + 16) = 0
(n + 16)(n - 15) = 0
n + 16 = 0 n = -16 |
n -15 = 0 n = 15 |
But n ≠ -16, because number of terms can not be a negative value.
Hence n = 15.
In the given series, 15 terms to be taken to get the sum 14400.
10. Answer :
Sum of the squares of first n natural numbers is 285 :
12 + 22 + 32 + ........ + n2 = 285
[n(n + 1)(2n + 1)]/6 = 285
Multiply each side by 6.
n(n + 1)(2n + 1) = 1710 ----(1)
Sum of their cubes is 2025 :
13 + 23 + 33 + ........ + n3 = 2025
[n(n + 1)/2]2 = 2025
[n(n + 1)/2]2 = 452
n(n + 1)/2 = 45
Multiply each side by 2.
n(n + 1) = 90
Substitute n(n + 10 = 90 in (1).
90(2n + 1) = 1710
Divide each side by 90.
2n + 1 = 19
Subtract 1 from each side.
2n = 18
Divide each side by 2.
n = 9
Kindly mail your feedback to v4formath@gmail.com
We always appreciate your feedback.
©All rights reserved. onlinemath4all.com
Apr 25, 25 11:46 AM
Apr 24, 25 11:10 PM
Apr 24, 25 11:06 PM