Sum of First n Natural Numbers

Formula to find the sum of first n natural numbers :

1 + 2 + 3 + ........ + n  =  n(n + 1)/2

Proof : 

To find (1 + 2 + 3 + ........ + n), let us consider the identity

(x + 1)2 - x2 = 2x + 1

When x = 1,  

22 - 12 = 2(1) + 1

When x = 2,  

32 - 22 = 2(3) + 1

When x = 3,  

42 - 32 = 2(3) + 1

Continuing this, when x = n - 1,

n2 - (n - 1)2 = 2(n - 1) + 1

When x = n,

(n + 1)2 - n2 = 2n + 1

Adding all these equations and cancelling the terms on the Left Hand side, we get,

(n + 1)2 - 12 = 2(1 + 2 + 3 + ........ + n) + n

n2 + 2n + 1 - 1 = 2(1 + 2 + 3 + ........ + n) + n

n2 + 2n = 2(1 + 2 + 3 + ........ + n) + n

Subtract n from each side. 

n2 + n = 2(1 + 2 + 3 + ........ + n)

or

2(1 + 2 + 3 + ........ + n) = n2 + n

2(1 + 2 + 3 + ........ + n) = n(n + 1)

Divide each side by n. 

1 + 2 + 3 + ........ + n  =  n(n + 1)/2

Example 1 : 

Find the value of

1 + 2 + 3 + ........ + 50

Solution :

Using 1 + 2 + 3 + ........ + n = n(n + 1)/2, 

1 + 2 + 3 + ........ + 50 = 50(50 + 1)/2

= 50(51)/2

= 25(51)

= 1275

Example 2 : 

Find the value of

16 + 17 + 18 + ........ + 75

Solution :

16 + 17 + 18 + ........ + 75 : 

= (1 + 2 + 3 + ........ + 75) - (1 + 2 + 3 + ........ + 15)

Using 1 + 2 + 3 + ........ + n = n(n + 1)/2, 

= 75(75 + 1)/2 - 15(15 + 1)/2

= 75(76)/2 - 15(16)/2

= 75(38) - 15(8)

= 2850 - 120

= 2730

Example 3 : 

Find the sum of 

1 + 2 + 3 + ........ to 40 terms

Solution :

Because the given series is a sum of first 40 natural numbers, the last term in the series is also 40. 

1 + 2 + 3 + ........ to 40 terms = 1 + 2 + 3 + ........ to 40

Using 1 + 2 + 3 + ........ + n = n(n + 1)/2, 

= 40(40 + 1)/2

= 40(41)/2

= 20(41)

= 820

Example 4 : 

Find the sum of

2 + 4 + 6 + ........ to 50 terms

Solution :

2 + 4 + 6 + ........ to 50 terms : 

= 2(1 + 2 + 3 + ........ to 50 terms)

= 2(1 + 2 + 3 + ........ + 50)

Using 1 + 2 + 3 + ........ + n = n(n + 1)/2, 

= 2[50(50 + 1)/2]

= 2[50(51)/2]

= 2[25(51)]

= 2550

Example 5 : 

Find the value of

2 + 4 + 6 + ........ + 256

Solution :

2 + 4 + 6 + ........ + 256 : 

= 2(1 + 2 + 3 + ........ + 128)

Using 1 + 2 + 3 + ........ + n = n(n + 1)/2, 

= 2[128(128 + 1)/2]

= 2[128(129)/2]

= 2[64(129)]

= 8256

Example 6 : 

If 1 + 2 + 3 + ........ + n = 666, then find n. 

Solution :

1 + 2 + 3 + ........ + n = 666

Using 1 + 2 + 3 + ........ + n = n(n + 1)/2, 

n(n + 1)/2 = 666

Multiply each side by 2.

n(n + 1) = 1332

n2 + n = 1332

Subtract 1332 from each side. 

n2 + n - 1332 = 0

Factor and solve. 

n2 + 37n - 36n - 1332 = 0

n(n + 37) - 36(n + 37) = 0

(n + 37)(n - 36) = 0

n + 37 = 0

n = -37

n - 36 = 0

n = 36

But n ≠ -37, because n is a natural number. 

Hence n = 36.

Example 7 :

Find the average of first 25 natural numbers. 

Solution :

Use 1 + 2 + 3 + ........ + n = n(n + 1)/2, to find the sum of first 25 natural numbers. 

1 + 2 + 3 + ........ + 25 = 25(25 + 1)/2

= 20(26)/2

= 20(13)

= 260

Average of first 25 natural numbers : 

= (Sum of first 25 natural numbers)/20

= 260/20

= 13

Example 8 :

Find the average of first 30 natural numbers which are the multiples of 5. 

Solution :

The first natural number which is a multiple of 5 is 5.

The next numbers which are the multiples of 5 are

10, 15, 20, ........

Write the first 30 natural numbers which are the multiples of 5.

5, 10, 15, ........ to 30 terms

Find the sum of all the above numbers. 

= 5 + 10 + 15 +......... to 30 terms

= 5(1 + 2 + 3 +......... to 30 terms)

= 5(1 + 2 + 3 +......... + 30)

Using 1 + 2 + 3 + ........ + n = n(n + 1)/2, 

= 5[30(30 + 1)/2]

= 5[15(31)]

= 5[465]

= 2325

Average :

= (Sum of all 30 numbers)/30 

= 2325/30

= 77.5 

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. AP Calculus AB Problems with Solutions

    Dec 26, 24 07:41 AM

    apcalculusab1.png
    AP Calculus AB Problems with Solutions

    Read More

  2. SAT Math Resources (Videos, Concepts, Worksheets and More)

    Dec 23, 24 03:47 AM

    SAT Math Resources (Videos, Concepts, Worksheets and More)

    Read More

  3. Digital SAT Math Problems and Solutions (Part - 91)

    Dec 23, 24 03:40 AM

    Digital SAT Math Problems and Solutions (Part - 91)

    Read More