1 + 3 + 5 + ......... to n terms
This is an arithmetic sequence with a1 = 1 and d = 3.
Formula for sum of first n terms of an arithmetic sequence :
Sn = (n/2)[2a1 + (n - 1)d]
Substitute a1 = 1 and d = 2.
= (n/2)[2(1) + (n - 1)2]
= (n/2)[2 + 2n - 2]
= (n/2)[2n]
= n2
1 + 3 + 5 + ........ to n terms = n2
In the sum of first n odd natural numbers, if the number of terms is not given and the last term l is given, then formula for finding number of terms n :
n = (l + 1)/2
And also,
1 + 3 + 5 + ........ + l = [(l + 1)/2]2
Example 1 :
Find the sum of
1 + 3 + 5 + ........ to 40 terms
Solution :
Using 1 + 3 + 5 + ........ to n terms = n2,
1 + 2 + 3 + ........ + 40 terms = 402
= 1600
Example 2 :
Find the value of
1 + 3 + 5 + ........ + 55
Solution :
Using 1 + 3 + 5 + ........ + l = [(l + 1)/2]2,
1 + 2 + 3 + ........ + 55 = [(55 + 1)/2]2
= [56/2]2
= 282
= 784
Example 3 :
Find the value of
21 + 23 + 25 + ........ + 99
Solution :
21 + 23 + 25 + ........ + 99 :
= (1 + 2 + 3 + ........ + 99) - (1 + 2 + 3 + ........ + 19)
Using 1 + 3 + 5 + ........ + l = [(l + 1)/2]2,
= [(99 + 1)/2]2 - [(19 + 1)/2]2
= [100/2]2 - [20/2]2
= 502 - 102
= 2500 - 100
= 2400
Example 4 :
Find the sum of
2 + 6 + 10 + ........ to 50 terms
Solution :
2 + 6 + 10 + ........ to 50 terms :
= 2(1 + 3 + 5 + ........ to 50 terms)
Using 1 + 3 + 5 + ........ to n terms = n2,
= 2(502)
= 2(2500)
= 5000
Example 5 :
Find the sum of
2 + 6 + 10 + ........ + 246
Solution :
2 + 6 + 10 + ........ + 256 :
= 2(1 + 3 + 5 + ........ + 123)
Using 1 + 3 + 5 + ........ + l = [(l + 1)/2]2,
= [(123 + 1)/2]2
= [124/2]2
= 622
= 3844
Example 6 :
If 1 + 3 + 5 + ........ + k = 1444, then find k.
Solution :
1 + 3 + 5 + ........ + k = 1444
Using 1 + 3 + 5 + ........ + l = [(l + 1)/2]2,
[(k + 1)/2]2 = 1444
[(k + 1)/2]2 = 382
(k + 1)/2 = 38
Multiply each side by 2.
k + 1 = 76
Subtract 1 from each side.
k = 75
Example 7 :
If 1 + 3 + 5 + ........ to k terms = 676, then find k.
Solution :
1 + 3 + 5 + ........ to k terms = 676
Using 1 + 3 + 5 + ........ to n terms = n2,
k2 = 676
k2 = 262
k = 26
Example 8 :
Find the average of first 25 odd natural numbers.
Solution :
Using 1 + 3 + 5 + ........ to n terms = n2, to find the sum of first 25 odd natural numbers.
1 + 2 + 3 + ........ to 25 terms = 252
= 625
Average of first 25 odd natural numbers :
= (Sum of first 25 odd natural numbers)/25
= 625/25
= 25
Kindly mail your feedback to v4formath@gmail.com
We always appreciate your feedback.
©All rights reserved. onlinemath4all.com
Dec 26, 24 07:41 AM
Dec 23, 24 03:47 AM
Dec 23, 24 03:40 AM