Sum of First n Odd Natural Numbers

1 + 3 + 5 + ......... to n terms

This is an arithmetic sequence with a1 = 1 and d = 3. 

Formula for sum of first n terms of an arithmetic sequence :

S= (n/2)[2a1 + (n - 1)d]

Substitute a1 = 1 and d = 2.

  = (n/2)[2(1) + (n - 1)2]

= (n/2)[2 + 2n - 2]

= (n/2)[2n]

= n2

1 + 3 + 5 + ........ to n terms = n2

In the sum of first n odd natural numbers, if the number of terms is not given and the last term is given, then formula for finding number of terms n :

n = (+ 1)/2

And also, 

1 + 3 + 5 + ........ + [(+ 1)/2]2

Example 1 : 

Find the sum of

1 + 3 + 5 + ........ to 40 terms

Solution :

Using 1 + 3 + 5 + ........ to n terms = n2

1 + 2 + 3 + ........ + 40 terms = 402

= 1600

Example 2 : 

Find the value of

1 + 3 + 5 + ........ + 55

Solution :

Using 1 + 3 + 5 + ........ + l [(l + 1)/2]2,

1 + 2 + 3 + ........ + 55 = [(55 + 1)/2]2

= [56/2]2

= 282

= 784

Example 3 : 

Find the value of

21 + 23 + 25 + ........ + 99

Solution :

21 + 23 + 25 + ........ + 99 :

= (1 + 2 + 3 + ........ + 99) - (1 + 2 + 3 + ........ + 19)

Using 1 + 3 + 5 + ........ + l [(l + 1)/2]2,

= [(99 + 1)/2]- [(19 + 1)/2]2

= [100/2]- [20/2]2

= 502 - 102

= 2500 - 100

= 2400

Example 4 : 

Find the sum of

2 + 6 + 10 + ........ to 50 terms

Solution :

2 + 6 + 10 + ........ to 50 terms : 

= 2(1 + 3 + 5 + ........ to 50 terms)

Using 1 + 3 + 5 + ........ to n terms = n2

= 2(502)

= 2(2500)

= 5000

Example 5 : 

Find the sum of

2 + 6 + 10 + ........ + 246

Solution :

2 + 6 + 10 + ........ + 256 : 

= 2(1 + 3 + 5 + ........ + 123)

Using 1 + 3 + 5 + ........ + l [(l + 1)/2]2,

= [(123 + 1)/2]2

= [124/2]2

= 622

= 3844

Example 6 : 

If 1 + 3 + 5 + ........ + k = 1444, then find k. 

Solution :

1 + 3 + 5 + ........ + k = 1444

Using 1 + 3 + 5 + ........ + l [(l + 1)/2]2,

 [(k + 1)/2]2 = 1444

 [(k + 1)/2]2 = 382

(k + 1)/2 = 38

Multiply each side by 2.

k + 1 = 76

Subtract 1 from each side. 

k = 75

Example 7 : 

If 1 + 3 + 5 + ........ to k terms = 676, then find k. 

Solution :

1 + 3 + 5 + ........ to k terms = 676

Using 1 + 3 + 5 + ........ to n terms = n2

k2 = 676

k2 = 262

k = 26

Example 8 :

Find the average of first 25 odd natural numbers. 

Solution :

Using 1 + 3 + 5 + ........ to n terms = n2to find the sum of first 25 odd natural numbers. 

1 + 2 + 3 + ........ to 25 terms = 252

= 625

Average of first 25 odd natural numbers : 

= (Sum of first 25 odd natural numbers)/25

= 625/25

= 25

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. AP Calculus AB Problems with Solutions

    Dec 26, 24 07:41 AM

    apcalculusab1.png
    AP Calculus AB Problems with Solutions

    Read More

  2. SAT Math Resources (Videos, Concepts, Worksheets and More)

    Dec 23, 24 03:47 AM

    SAT Math Resources (Videos, Concepts, Worksheets and More)

    Read More

  3. Digital SAT Math Problems and Solutions (Part - 91)

    Dec 23, 24 03:40 AM

    Digital SAT Math Problems and Solutions (Part - 91)

    Read More