Special series are the series which are special in some way.
Some of the special series are :
(i) Sum of first ‘n’ natural numbers
1 + 2 + 3 + ............ + n = n(n + 1)/2
(ii) Sum of first ‘n’ odd natural numbers.
1 + 3 + 5 + ............ + (2n-1) = n2
(iii) Sum of squares of first ‘n’ natural numbers.
12 + 22 + 32 + ............ + n2 = n(n + 1)(2n + 1)/6
(iv) Sum of cubes of first ‘n’ natural numbers.
13 + 23 + 33 + ............ + n3 = [n(n + 1)/2]2
Example 1 :
If 1 + 2 + 3 + .......+ k = 325 , then find 13 +23 + 33 +......+ k3.
Solution :
Given that :
1 + 2 + 3 + ...........+ k = 325
13 +23 + 33 +......+ k3 = [k(k+1)/2]2
= (Sum of k natural numbers)2
= 3252
= 105625
Example 2 :
If 13 + 23 + 33 +............+ k3 = 44100 then find 1 + 2 + 3 +......+k .
Solution :
Given that
13 + 23 + 33 +............+ k3 = 44100
[k(k + 1)/2]2 = 44100
[k(k + 1)/2] = √44100
[k(k + 1)/2] = 210
1 + 2 + 3 + ......... + k = 210
Example 3 :
How many terms of the series 13 + 23 + 33 +............ should be taken to get the sum 14400?
Solution :
Sn = 14400
[n(n + 1)/2]2 = 14400
[n(n + 1)/2] = √14400
[n(n + 1)/2] = 120
n2 + n = 240
n2 + n - 240 = 0
(n + 16)(n - 15) = 0
n = -16, 15
Hence the required number of terms is 15.
Example 4 :
The sum of the squares of the first n natural numbers is 285, while the sum of their cubes is 2025. Find the value of n.
Solution :
12 + 22 + 32 +............ + n2 = 285
13 + 23 + 33 +............ + n3 = 2025
By applying the value of n(n + 1)/2 = 45
45[(2n + 1)/3] = 285
(2n + 1)/3 = 285/45
(2n + 1)/3 = 57/9
(2n + 1) = 57/3
6n + 3 = 57
6n = 57 - 3
6n = 54
n = 9
Example 5 :
Rekha has 15 square colour papers of sizes 10 cm, 11 cm, 12 cm,…, 24 cm. How much area can be decorated with these colour papers?
Solution :
Required area
102 + 112 + 122 + .............+ 242
= (12 + 22 + 32 + .........+ 242) - (12 + 22 + 32 + ..........+ 92)
= [24(24 + 1)(2(24) + 1)/6] - [9(9 + 1)(2(9) + 1)/6]
= [24(25)(49)/6] - [9(10)(19)/6]
= 4900 - 285
= 4615 cm2
Example 6 :
Find the sum of the series (23 − 1) + (43 −33) + (63 −53)+....... to (i) n terms (ii) 8 terms
Solution :
= (23 − 1) + (43 − 33) + (63 − 53)+.......
First numbers are even and second numbers are odd.
(i) n terms
General term of the given series = (2n)3 − (2n - 1)3
= 8n3 - [(2n)3 - 3(2n)2 (1) + 3(2n)(1) - 13]
= 8n3 - [8n3 - 12n2 + 6n - 1]
= 8n3 - 8n3 + 12n2 - 6n + 1
= 12n2 - 6n + 1
= [12n(n +1)(2n + 1)/6] - 6[n(n + 1)/2] + n
= 2n(n + 1)(2n + 1) - 3n(n + 1) + n
= 2n(2n2 + n + 2n + 1) - 3n2 - 3n + n
= 4n3 + 6n2 + 2n - 3n2 - 3n + n
= 4n3 + 3n2
Hence the sum of n terms 4n3 + 3n2
(ii) 8 terms
= 4n3 + 3n2
n = 8
= 4(8)3 + 3(8)2
= 2048 + 192
= 2240
Kindly mail your feedback to v4formath@gmail.com
We always appreciate your feedback.
©All rights reserved. onlinemath4all.com
Dec 26, 24 07:41 AM
Dec 23, 24 03:47 AM
Dec 23, 24 03:40 AM