Sum of Squares of First n Natural Numbers

Formula to find the sum squares of first n natural numbers :

12 + 22 + 32 + ........ + n2  =  [n(n + 1)(2n + 1)]/6

Proof : 

To find (12 + 22 + 32 + ........ + n2), let us consider the identity

(x + 1)3 - x3 = 3x2 + 3x + 1

When x = 1,  

23 - 13 = 3(1)2 + 3(1) + 1

When x = 2,  

33 - 23 = 3(2)2 + 3(2) + 1

When x = 3,  

43 - 33 = 3(3)2 + 3(3) + 1

Continuing this, when x = n - 1,

n3 - (n - 1)3 = 3(n - 1)2 + 3(n - 1) + 1

When x = n,

(n + 1)3 - n3 = 3n2 + 3n + 1

Adding all these equations and cancelling the terms on the Left Hand side, we get,

(n + 1)3 - 13 = 3(12 + 22 + ....... + n2) + 3(1 + 2 + ....... + n) + n

n3 + 3n2 + 3n = 3(12 + 22 + ....... + n2) + 3n(n + 1)/2 + n

3(12 + 22 + ....... + n2) = n3 + 3n2 + 3n - 3n(n + 1)/2 - n

3(12 + 22 + ....... + n2) = n3 + 3n2 + 2n - (3n2 + 3n)/2

3(12 + 22 + ....... + n2) = 2(n3 + 3n2 + 2n)/2 - (3n2 + 3n)/2

3(12 + 22 + ....... + n2) = [2(n3 + 3n2 + 2n) - (3n2 + 3n)]/2

3(12 + 22 + ....... + n2) = (2n3 + 6n2 + 4n - 3n2 - 3n)/2

3(12 + 22 + ....... + n2) = (2n3 + 3n2 + n)/2

3(12 + 22 + ....... + n2) = n(2n2 + 3n + 1)/2

3(12 + 22 + ....... + n2) = [n(n + 1)(2n + 1)]/2

12 + 22 + ....... + n2 = [n(n + 1)(2n + 1)]/6

Example 1 : 

Find the value of

12 + 22 + 32 + ........ + 502

Solution :

= 12 + 22 + 32 + ........ + 502 

Using 12 + 22 + 32 + ........ + n2 = [n(n + 1)(2n + 1)]/6,

= [50(50 + 1)(2x50 + 1)]/6

[50(50 + 1)(100 + 1)]/6

= [50(51)(101)]/6

= [50(51)(101)]/6

= 42925

Example 2 : 

Find the value of

152 + 162 + 172 + ........ + 282

Solution :

152 + 162 + 172 + ........ + 282 :

= (12 + 22 + 32 + ........ + 282) - (12 + 22 + 32 + ........ + 142)

Using 12 + 22 + 32 + ........ + n2 = [n(n + 1)(2n + 1)]/6,

= [28(28 + 1)(2x28 + 1)]/6 - [14(14 + 1)(2x14 + 1)]/6

= [28(29)(56 + 1)]/6 - [14(15)(28 + 1)]/6

= [28(29)(57)]/6 - [14(15)(29)]/6

= 7714 - 1015

= 6699

Example 3 : 

Find the value of

52 + 102 + 152 + ........ + 1052

Solution :

= 52 + 102 + 152 + ........ + 1052

= (5x1)2 + (5x2)2 + (5x3)2 + ........ + (5x21)2

= 5212 + 5222 + 5232 + ........ + 52212

= 52(12 + 22 + 32 + ........ + 212)

= 25(12 + 22 + 32 + ........ + 212)

Using 12 + 22 + 32 + ........ + n2 = [n(n + 1)(2n + 1)]/6,

= 25[21(21 + 1)(2x21 + 1)]/6

= 25[21(22)(42 + 1)]/6

= 25[21(22)(43)]/6

= 82775

Example 4 : 

Find the sum of 

2 + 8 + 18 + ........ + to 30 terms

Solution :

2 + 8 + 18 + ........ + to 30 terms : 

=  2(1 + 4 + 9 + ........ to 30 terms)

=  2(12 + 22 + 32 + ........ to 30 terms)

=  2(12 + 22 + 32 + ........ + 302)

Using 12 + 22 + 32 + ........ + n2 = [n(n + 1)(2n + 1)]/6,

= 2[30(30 + 1)(2x30 + 1)]/6

= 2[30(31)(60 + 1)]/6

= 2[30(31)(61)]/6

= 18910

Example 5 : 

Find the sum of

3 + 12 + 27 + ........ + 1875

Solution :

3 + 12 + 27 + ........ + 1875 :

= 3(1 + 4 + 9 + ........ + 625)

=  3(12 + 22 + 32 + ........ + 252)

Using 12 + 22 + 32 + ........ + n2 = [n(n + 1)(2n + 1)]/6,

= 3[25(25 + 1)(2x25 + 1)]/6

= 3[25(26)(50 + 1)]/6

= 3[25(26)(51)]/6

= 16575

Example 6 :

Find the average of squares first 25 natural numbers. 

Solution :

Using 12 + 22 + 32 + ........ + n2 = [n(n + 1)(2n + 1)]/6, to find the sum of squares first 25 natural numbers. 

12 + 22 + 32 + ........ + 252 :

= [25(25 + 1)(2x25 + 1)]/6

= [25(26)(50 + 1)]/6

= [25(26)(51)]/6

= 5525

Average of squares first 25 natural numbers : 

= (Sum of squares first 25 natural numbers)/25

= 5525/25

= 221

Example 7 : 

Rekha has 15 square color papers of sizes 10 cm, 11 cm, 12 cm,…, 24 cm. How much area can be decorated with these color papers?

Solution :

Total area covered by the given 15 square color papers  :

= 102 + 112 + 122 + ........ + 242

= (12 + 22 + 32 + ........ + 242) - (12 + 22 + 32 + ........ + 92)

Using 12 + 22 + 32 + ........ + n2 = [n(n + 1)(2n + 1)]/6,

= [24(24 + 1)(2x24 + 1)]/6 - [9(9 + 1)(2x9 + 1)]/6

= [24(25)(48 + 1)]/6 - [9(10)(18 + 1)]/6

= [24(25)(49)]/6 - [9(10)(19)]/6

= 4900 - 285

= 4615

The area of 4615 cm2 can be decorated with the 15 square color papers that Rekha has. 

Example 8 : 

The sum of first n natural numbers is 120, while the sum of their squares is 1240. Find the value of n.

Solution :

Sum of first n natural numbers is 120 :

1 + 2 + 3 +, ...... + n = 120

[n(n + 1)]/2 = 120

Multiply each side by 2. 

n(n + 1) = 240

Sum of their squares is 1240 : 

12 + 22 + 32 + ........ + n2 = 1240

[n(n + 1)(2n + 1)]/6 = 1240

Substitute n(n + 1) = 240.

[240(2n + 1)]/6 = 1240

40(2n + 1) = 1240

Divide each side by 40.

2n + 1 = 31

Subtract 1 from each side. 

2n = 30

Divide each side by 2.

n = 15

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. SAT Math Resources (Videos, Concepts, Worksheets and More)

    Jan 07, 25 03:55 AM

    SAT Math Resources (Videos, Concepts, Worksheets and More)

    Read More

  2. Digital SAT Math Problems and Solutions (Part - 97)

    Jan 07, 25 03:53 AM

    digitalsatmath88.png
    Digital SAT Math Problems and Solutions (Part - 97)

    Read More

  3. AP Calculus AB Problems with Solutions (Part - 5)

    Jan 06, 25 05:53 AM

    AP Calculus AB Problems with Solutions (Part - 5)

    Read More