TESTING CONTINUITY OF A FUNCTION WORKSHEET WITH ANSWERS

(1)  Prove that f(x) = 2x2 + 3x - 5 is continuous at all points in R.    Solution

(2)  Examine the continuity of the following 

(i)  x + sin x       Solution

(ii)  x2 cos x        Solution

(iii)  ex tan x       Solution

(iv)  e2x + x2             Solution

(v)  x ln x          Solution

(vi)  sin x / x2        Solution

(vii)  (x- 16) / (x + 4)       Solution

(viii)  |x + 2| + |x - 1|      Solution

(ix)  |x - 2| / |x + 1|      Solution

(x)  cot x + tan x        Solution

(3)  Find the points of discontinuity of the function f, where

Solution

(ii)

Solution

(iii)

Solution

(iv)

Solution

(4)  At the given point x0 discover whether the given function is continuous or discontinuous citing the reasons for your answer :

Solution

Solution

(5)  Show that the function

is continuous on (- ∞, ∞).        Solution

(6)  For what value of a is this function f(x) = 

continuous at x = 1 ?      Solution

(7)  Let f(x)

Graph the function. Show that f(x) continuous on (- ∞, ∞).

Solution

(8)  If f and g are continuous functions with f(3) = 5 and lim x->3 [2 f(x) - g(x)]  =  4, find g(3).       Solution

(9)  Find the points at which f is discontinuous. At which of these points f is continuous from the right, from the left, or neither? Sketch the graph of f.

Solution

(10)  A function f is defined as follows :

Is the function continuous?

(11)  Which of the following functions f has a removable discontinuity at x = x0? If the discontinuity is removable, find a function g that agrees with f for x ≠ x0 and is continuous on R.

(i)  f(x)  =  (x2 - 2x - 8)/(x + 2), x0  =  -2      Solution

(ii)  f(x)  =  (x3 + 64)/(x + 4), x0  =  -4       Solution

(iii)  f(x)  =  (3 - √x)/(9 - x), x0  =  9        Solution

(12)  Find the constant b that makes g continuous on (−∞, ∞)

Solution

(13)  Consider the function f (x) = x sin π/x What value must we give f(0) in order to make the function continuous everywhere?        Solution

(14)  The function f(x)  =  (x2 - 1) / (x3 - 1) is not defined at x = 1. What value must we give f(1) inorder to make f(x) continuous at x = 1 ?       Solution

(15)  State how continuity is destroyed at x = xfor each of the following graphs.

(i)  

Solution

(ii)  

Solution

(iii)

Solution

(iv)

Solution

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. Digital SAT Math Problems and Solutions (Part - 62)

    Nov 05, 24 11:16 AM

    Digital SAT Math Problems and Solutions (Part - 62)

    Read More

  2. SAT Math Resources (Videos, Concepts, Worksheets and More)

    Nov 05, 24 11:15 AM

    SAT Math Resources (Videos, Concepts, Worksheets and More)

    Read More

  3. Worksheet on Proving Trigonometric Identities

    Nov 02, 24 11:58 PM

    tutoring.png
    Worksheet on Proving Trigonometric Identities

    Read More