THE MIDPOINT AND DISTANCE FORMULAS WORKSHEET

Problem 1 : 

Find the coordinates of the midpoint of the line segment AB with endpoints A(-2, 3) and B(2, -2).

Problem 2 : 

Find the coordinates of the midpoint of the line segment CD with endpoints C(-2, -1) and D (4, 2).

Problem 3 : 

M is the midpoint of the line segment AB. A has coordinates (-2, 3), and M has coordinates (3/2, 0). Find the coordinates of B.

Problem 4 : 

S is the midpoint of the line segment EF. E has coordinates (2, 2), and S has coordinates (4, -3). Find the coordinates of F.

Problem 5 : 

X is the midpoint of the line segment RT. R has coordinates (-6, -1), and S has coordinates (-1, 1). Find the coordinates of T.

Problem 6 : 

Use the Distance Formula to find the distance, to the nearest hundredth, from A(-2, 3) to B(2, -2).

Problem 7 : 

Use the Distance Formula to find the distance, to the nearest hundredth, from C(3, 2) to D(-3, -1).

Problem 8 : 

Each unit on the map of Lake Okeechobee represents 1 mile. Kemka and her father plan to travel from point A near the town of Okeechobee to point B at Pahokee. To the nearest tenth of a mile, how far do Kemka and her father plan to travel?

Answers

1. Answer :

Write the formula. 

Substitute (-2, 3) for (x1, y1) and (2, -2) for (x2, y2). 

=  M[⁽⁻² ⁺ ²⁾⁄₂, ⁽³ ⁻ ²⁾⁄₂]

=  M(0, ½)

=  M(0, ½)

The midpoint of the line segment AB is M(0, ½).  

2. Answer :

Write the formula. 

Substitute (-2, -1) for (x1, y1) and (4, 2) for (x2, y2). 

=  M[⁽⁻² ⁺ ⁴⁾⁄₂, ⁽⁻¹ ⁺ ²⁾⁄₂]

=  M(²⁄₂, ½)

=  M(1, ½)

3. Answer :

Step 1 :

Let the coordinates of B equal (x, y).

Step 2 :

Use the Midpoint Formula.

(3/2, 0)  =  [⁽⁻² ⁺ ˣ⁾⁄₂, ⁽³ ⁺ ʸ⁾⁄₂]

Step 3 :

Find the x-coordinate.

3/2  =  ⁽⁻² ⁺ ˣ⁾⁄₂

3  =  -2 + x

5  =  x

Find the y-coordinate.

0  =  ⁽³ ⁺ ʸ⁾⁄₂

0  =  3 + y

-3  =  y

The coordinates of B are (5, –3).

4. Answer :

Step 1 :

Let the coordinates of B equal (a, b).

Step 2 :

Use the Midpoint Formula.

(4, -3)  =  [⁽² ⁺ ᵃ⁾⁄₂, ⁽² ⁺ b⁾⁄₂]

Step 2 :

Find the x-coordinate.

4  =  ⁽² ⁺ ᵃ⁾⁄₂

8  =  2 + a

6  =  a

Find the y-coordinate.

-3  =  ⁽² ⁺ b⁾⁄₂

-6  =  2 + b

-8  =  b

The coordinates of F are (6, –8).

5. Answer :

Step 1 :

Let the coordinates of T equal (p, q).

Step 2 :

Use the Midpoint Formula.

(-1, 1)  =  [⁽⁻⁶ ⁺ ᵖ⁾⁄₂, ⁽⁻¹ ⁺ q⁾⁄₂]

Step 2 :

Find the x-coordinate.

-1  =  ⁽⁻⁶ ⁺ ᵖ⁾⁄₂

-2  =  -6 + p

4  =  p

Find the y-coordinate.

1  =  ⁽⁻¹ ⁺ q⁾⁄₂

2  =  -1 + q

3  =  q

The coordinates of T are (4, 3).

6. Answer :

Distance Formula : 

d  =  √[(x2 - x1)2 + (y2 - y1)2]

Substitute (-2, 3) for (x1, y1) and (2, -2) for (x2, y2). 

d  =  √[(2 + 2)2 + (-2 - 3)2]

Simplify. 

d  =  √[42 + (-5)2]

d  =  √[16 + 25]

d  =  √41

d  ≈  6.40

The distance between from A(-2, 3) to B(2, -2) is about 6.40 units. 

7. Answer :

Distance Formula : 

d  =  √[(x2 - x1)2 + (y2 - y1)2]

Substitute (3, 2) for (x1, y1) and (-3, -1) for (x2, y2). 

d  =  √[(-3 - 3)2 + (-1 - 2)2]

Simplify. 

d  =  √[(-6)2 + (-3)2]

d  =  √[36 + 9]

d  =  √45

d  ≈  6.71

The distance between from C(3, 2) to D(-3, -1) is about 6.71 units. 

8. Answer :

Distance Formula : 

d  =  √[(x2 - x1)2 + (y2 - y1)2]

Substitute (33, 13) for (x1, y1) and (22, 39) for (x2, y2). 

d  =  √[(33 - 22)2 + (13 - 39)2]

Simplify. 

d  =  √[112 + (-26)2]

d  =  √[121 + 676]

d  =  √797

d  ≈  28.2

Kemka and her father plan to travel about 28.2 miles.

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. AP Calculus AB Problems with Solutions (Part - 7)

    Jan 26, 25 06:56 AM

    apcalculusab6.png
    AP Calculus AB Problems with Solutions (Part - 7)

    Read More

  2. Digital SAT Math Problems and Solutions (Part - 103)

    Jan 25, 25 01:00 AM

    digitalsatmath103.png
    Digital SAT Math Problems and Solutions (Part - 103)

    Read More

  3. SAT Math Resources (Videos, Concepts, Worksheets and More)

    Jan 25, 25 12:52 AM

    SAT Math Resources (Videos, Concepts, Worksheets and More)

    Read More