THIRD ANGLE THEOREM WORKSHEET

1.  In the diagram shown below, ∠L ≅ ∠P and ∠M ≅ ∠Q, find m∠N and m∠R. Check whether ∠N ≅ ∠R and justify your answer.   

2.  In the diagram given below, ∠B ≅ ∠U and ∠C ≅ ∠V, find m∠A and using the Third Angles Theorem to find m∠T.

3.  Find the value of x in the diagram given below. 

4.  Decide whether the triangles are congruent. Justify your reasoning. 

1. Answer : 

Given : ∠L ≅ ∠P and ∠M ≅ ∠Q.

From the figure above,

we have m∠L  =  105°

Because ∠L  ≅  ∠P, 

we have m∠P  =  105°

From the figure above,

we have m∠Q  =  45°

Because ∠Q  ≅  ∠M, 

we have m∠M  =  45°

ΔLMN : 

By the Triangle Sum theorem, we have

m∠L + m∠M + m∠N  =  180°

Substitute 105° for m∠L and 45° for m∠M.

105° + 45° + m∠N  =  180°

Simplify. 

150° + m∠N  =  180°

Subtract 150° from both sides. 

m∠N  =  30°

ΔPQR : 

By the Triangle Sum theorem, we have 

m∠P + m∠Q + m∠R  =  180°

Substitute 105° for m∠P and 45° for m∠Q.

105° + 45° + m∠R  =  180°

Simplify. 

150° + m∠R  =  180°

Subtract 150° from both sides.

m∠R  =  30°

Because m∠N = 30° and m∠R = 30°, we have

m∠N = m∠R -----> ∠N ≅ ∠R

Justification : 

By the Third Angles Theorem, if two angles of one triangle are congruent to two angles of another triangle, then the third angles are also congruent.

So, ∠N ≅ ∠R.

2. Answer : 

Given : ∠B ≅ ∠U and ∠C ≅ ∠V. 

From the figure, we have m∠U = 59°.

Because ∠B ≅ ∠U, we have m∠B = 59°.

In ΔABC, by the Triangle Sum theorem, we have 

m∠A + m∠B + m∠C  =  180°

Substitute 59° for m∠B and 55° for m∠C.  

m∠A + 59° + 55°  =  180°

Simplify. 

m∠A + 114°  =  180°

Subtract 114° from both sides. 

m∠A  =  66°

By the Third Angles Theorem, if two angles of one triangle are congruent to two angles of another triangle, then the third angles are also congruent.

So, we have 

∠T ≅ ∠A

m∠T = ∠A

m∠T =  66°

3. Answer : 

In the diagram above, ∠N ≅ ∠R and ∠L ≅ ∠S. From the Third angles theorem, we know that ∠M ≅ ∠T. So, m∠M m∠T.

From the triangle sum theorem, we have 

m∠L + m∠M + m∠N  =  180°

65° + 55° + m∠M  =  180°

Simplify

120° + m∠M  =  180°

Subtract 120° from both sides. 

m∠M  =  60° 

By the theorem, if two angles of one triangle are congruent to two angles of another triangle, then the third angles are also congruent.

So, we have

∠M ≅ ∠T ----> m∠M = m∠T

Substitute 60° for m∠M and (2x + 30)° for m∠M.

60°  =  (2x + 30)°

60  =  2x + 30

Subtract 30 from both sides.

30  =  2x

Divide both sides by 2. 

15  =  x

4. Answer : 

In the diagram above, we are given that all three pairs of corresponding sides are congruent. 

RP ≅ MN, PQ ≅ NQ and Q≅ QM

Because ∠P and ∠N have the same measure, ∠P ≅ ∠N.

By the Vertical Angles Theorem, we know that 

∠PQR ≅ MQN

In ΔPQR and ΔMQN, ∠P ≅ ∠N and ∠PQR ≅ MQN.  

By the theorem, if two angles of one triangle are congruent to two angles of another triangle, then the third angles are also congruent.

So, we have

R ≅ M

So, all three pairs of corresponding sides and all three pairs of corresponding angles are congruent.

By the definition of congruent angles, 

ΔPQR ≅ ΔNQM

Apart from the stuff given above, if you need any other stuff in math, please use our google custom search here.

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. SAT Math Resources (Videos, Concepts, Worksheets and More)

    Nov 21, 24 06:23 AM

    SAT Math Resources (Videos, Concepts, Worksheets and More)

    Read More

  2. Digital SAT Math Problems and Solutions (Part - 75)

    Nov 21, 24 06:13 AM

    digitalsatmath62.png
    Digital SAT Math Problems and Solutions (Part - 75)

    Read More

  3. Digital SAT Math Problems and Solutions (Part - 74)

    Nov 20, 24 08:12 AM

    digitalsatmath60.png
    Digital SAT Math Problems and Solutions (Part - 74)

    Read More