HOW TO FIND VALUES OF TRIGONOMETRIC FUNCTIONS OF ANY ANGLE

The following steps will be useful to find the value of trigonometric functions for any angle.

Step 1 :

To find the value of any trigonometric angles, first we have to write the given angles in any one of the following forms.

(90 + θ)

(90 - θ)

(180 + θ)

 (180 - θ)

(270 + θ)

(270 - θ)

(360 + θ)

(360 - θ)

Note :

If the given angle measures more than 360 degree, we have to divide it by 360 and write the remainder in one of the above forms.

Step 2 :

If we write the given angles in the form (90 + θ), (90 - θ), (270 + θ) or (270 - θ), we have to convert the given trigonometric ratios as follows.

sin θ  <---> cos θ

cosec θ  <---> sec θ

tan θ  <---> cot θ

Note :

We have a advantage for cos and sec functions.

That is,

cos ( - θ)  =  cos θ     and    sec (-θ)  =  sec θ

But for other trigonometric ratios,

sin (-θ)  = - sin θ 

cosec (-θ) = -cosec θ 

tan (-θ) = -tan θ

cot (-θ) = -cot θ 

Values of Trigonometric Angles

To evaluate the given trigonometric functions of special angles, we use the table given below.

θ

0°

30°

45°

60°

90°

sin θ

0

1/2

1/√2

√3/2

1

cos θ

1

√3/2

1/√2

1/2

0

tan θ

0

1/√3

1

√3

Practice Problems

Problem 1 :

Find the value of sin 480°.

Solution :

sin 480° =  sin 120°

  =  sin (90 + 30)

=  cos 30

120° lies in 2nd quadrant. For sin and cosec, we will have positive 

√3/2

So, the value of sin 480° is √3/2.

Problem 2 :

Find the value of sin (-1110°).

Solution :

sin (-1110°)  =  -sin 1110°

  =  -sin 30

30° lies in 1st quadrant. For all trigonometric ratios, weh ave positive.

=  -1/2

So, the value of sin (-1110°) is -1/√2.

Problem 3 :

Find the value of cos 300°.

Solution :

 cos 300°  =  cos (270 + 30)

300° lies in 4th quadrant. For cos and sec, we will have positive.

   =  sin 30

  =  1/2

So, the value of cos 300° is 1/2.

Problem 4 :

Find the value of tan 1050°.

Solution :

tan 1050°  =  tan 330

  =  tan (270 + 60)

=  -cot 60

300° lies in 4th quadrant. For cos and sec, we will have positive.

=  -1/√3

So, the value of tan 1050° is  -1/√3.

Problem 4 :

Find the value of cot 660°.

Solution :

tan 660°  =  tan 300

  =  tan (270 + 30)

=  -cot 30

300° lies in 4th quadrant. For cos and sec, we will have positive.

=  -√3

So, the value of cot 660° is -√3.

Problem 4 :

Find the value of cot 19π/3.

Solution :

cot 19π/3  =  cot (6π + π/3)

  =  cot  π/3

=  √3

Problem 4 :

Find the value of sin (-11π/3).

Solution :

sin (-11π/3)  =  -sin (4π - π/3)

  =  sin π/3

√3/2

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. Linear Inequality Word Problems with Solutions

    Jan 11, 25 07:52 AM

    Linear Inequality Word Problems with Solutions

    Read More

  2. SAT Math Resources (Videos, Concepts, Worksheets and More)

    Jan 10, 25 05:08 AM

    SAT Math Resources (Videos, Concepts, Worksheets and More)

    Read More

  3. Digital SAT Math Problems and Solutions (Part - 98)

    Jan 10, 25 05:02 AM

    digitalsatmath90.png
    Digital SAT Math Problems and Solutions (Part - 98)

    Read More