Problem 1 :
If (cos α/cos β) = m and (cos α/ sin β) = n then prove that
(m2 + n2)cos2β = n2
Solution :
m = (cos α/cos β)
Square both sides
m2 = (cos α/cos β)2
m2 = (cos2α/cos2β) -----(1)
n = (cos α/ sin β)
Square both sides.
n2 = (cos α/sin β)2
n2 = (cos2α/sin2β) -----(2)
(1) + (2) :
m2 + n2 = (cos2α/sin2β) + (cos2α/cos2β)
m2 + n2 = (cos2αcos2β + cos2αsin2β) / sin2βcos2β
m2 + n2 = cos2α(cos2β + sin2β) / sin2βcos2β
m2 + n2 = cos2α(1) / sin2βcos2β
m2 + n2 = cos2α / sin2βcos2β
(m2 + n2)cos2 β = (cos2α / sin2βcos2β)cos2β
(m2 + n2)cos2 β = cos2α / sin2β
(m2 + n2)cos2 β = (cosα/sinβ)2
(m2 + n2)cos2 β = n2
Problem 2 :
If cotθ + tan θ = x and secθ - cosθ = y, then prove that
(x2y)2/3 - (xy2)2/3 = 1
Solution :
Finding x2 :
x = cotθ + tanθ
x = (cosθ/sinθ) + (sinθ/cosθ)
x = (cos2θ + sin2θ)/sinθcosθ
x = 1/sinθcosθ
x2 = 1/sin2θcos2θ
Finding y2 :
y = secθ - cosθ
y = (1/cosθ) - cosθ
y = (1 - cos2θ)/cosθ
y = sin2θ/cosθ
y2 = sin4θ/cos2θ
Finding (x2y)2/3 :
x2y = (1/sin2θcos2θ)(sin2θ/cosθ)
x2y = (1/cos3θ)
(x2y)2/3 = [(1/cos3θ)]2/3
(x2y)2/3 = 1/cos2θ
(x2y)2/3 = sec2θ -----(1)
Finding (xy2)2/3 :
xy2 = (1/sinθ cosθ)(sin4θ/cos2θ)
xy2 = (sin3θ/cos3θ)
(xy2)2/3 = (sin2θ/cos2θ)
(xy2)2/3 = tan2θ ---(2)
(1) - (2) :
(x2y)2/3 - (x2y)2/3 = 1
sec2θ - tan2θ = 1
Problem 3 :
If sinθ + cosθ = p and secθ + cosecθ = q, then prove that
q(p2 −1) = 2p
Solution :
p = sinθ + cosθ
p2 = (sinθ + cosθ)2
p2 = sin2θ + cos2θ + 2sinθcosθ
p2 = 1 + 2sinθcosθ
p2 - 1 = 1 + 2sinθcosθ - 1
p2 - 1 = 2sinθcosθ
q(p2 −1) = (secθ + cosecθ)(2sinθcosθ)
q(p2 −1) = (1/cosθ) + (1/sinθ)(2sinθcosθ)
q(p2 −1) = [(2sinθcosθ)/cosθ] + [(2sinθcosθ)/sinθ]
q(p2 −1) = 2sinθ + 2cosθ
q(p2 −1) = 2(sinθ + cosθ)
q(p2 −1) = 2p
Problem 4 :
If sinθ(1 + sin2θ) = cos2θ, then prove that
cos6θ - 4cos4θ + 8cos2θ = 4
Solution :
sinθ(1 + sin2θ) = cos2θ
sinθ + sin3θ = 1 - sin2θ
sinθ + sin2θ + sin3θ = 1
sinθ + sin3θ = 1 - sin2θ
Square both sides.
(sinθ + sin3θ)2 = (1 - sin2θ)2
sin2θ + 2sin4θ + sin6θ = 1 - 2sin2θ + sin4θ
sin2θ + 2sin2θ + 2sin4θ - sin4θ + sin6θ = 1
3sin2θ + sin4θ + sin6θ = 1
3(1 - cos2θ) + (1 - cos2θ)2 + (1 - cos2θ)3 = 1
3-3cos2θ+1+cos4θ-2cos2θ+1-3cos2θ+3cos4θ-cos6θ = 1
4 - cos6θ + 4cos4θ - 8cos2θ = 0
cos6θ − 4cos4θ + 8cos2θ = 4
Problem 5 :
If cosθ/(1 + sinθ) = 1/a, then prove that
(a2 - 1)/(a2 + 1) = sinθ
Solution :
cosθ / (1 + sinθ) = 1/a
a = (1 + sin θ)/cosθ
Finding (a2 - 1) :
a2 = [(1 + sinθ)/cosθ]2
a2 = [(1 + sinθ)2 / cos2θ]
a2 = (1 + sin2θ + 2sinθ)/cos2θ]
a2 - 1 = (1 + sin2θ + 2sin θ)/cos2 θ] - 1
a2 - 1 = (1 + sin2θ + 2sinθ - cos2θ)/cos2θ
a2 - 1 = (2sin2θ + 2sinθ)/cos2θ
a2 - 1 = 2sinθ(sinθ + 1)/cos2θ
a2 - 1 = 2sinθ(sinθ + 1)/(1 - sin2θ)
a2 - 1 = 2sinθ /(1 - sinθ) -----(1)
Finding (a2 + 1) :
a2 + 1 = (1 + sin2θ + 2sin θ)/cos2 θ] + 1
a2 + 1 = (1 + sin2θ + 2sin θ + cos2 θ)/cos2 θ
a2 + 1 = (1 + 1 + 2sin θ )/cos2 θ
a2 + 1 = 2(1 + sin θ )/(1-sin2 θ)
a2 + 1 = 2/(1-sin θ) -----(2)
(1)/(2) :
(a2 - 1)/(a2 + 1) = [2sinθ/(1 - sinθ)] / [2/(1 - sinθ)]
(a2 - 1)/(a2 + 1) = sinθ
Kindly mail your feedback to v4formath@gmail.com
We always appreciate your feedback.
©All rights reserved. onlinemath4all.com
Dec 26, 24 07:41 AM
Dec 23, 24 03:47 AM
Dec 23, 24 03:40 AM