Problem 1 :
Evaluate the following limit
lim x-> 0 (1 + sin x)2 cosec x
Solution :
= lim x-> 0 (1 + sin x)2 cosec x
Let y = sin x
If x -> 0, then y -> 0
cosec x = 1/ sin x = 1/y
lim x-> 0 (1 + sin x)2 cosec x = lim x-> 0 (1 + y)2/y
lim x-> 0 (1 + x)1/x = e
= e2
Problem 2 :
Evaluate the following limit
lim x-> 0 (√2 - √(1 + cos x)) / sin2 x
Solution :
= lim x-> 0 (√2 - √(1 + cos x)) / sin2 x
By applying the limit value directly in the given question, we get 0/0. That is indeterminate form.
So let us rationalize the numerator,
= limx->0((√2-√(1+cosx))/sin2x)⋅[(√2+√(1+cosx))/(√2+√(1+ cosx))]
= limx->0((2-(1+cosx))/sin2x(√2+√(1+ cosx))
= limx->0 (1-cosx)/[1+cosx)(1-cosx)(√2+√(1+ cosx))]
= limx->0 1/[(1+cosx)(√2+√(1+ cosx))]
= 1/[2(√2+√(1+1)]
= 1/4√2
Hence the value of lim x-> 0 (√2 - √(1 + cos x)) / sin2 x is 1/4√2.
Problem 3 :
Evaluate the following limit
lim x-> 0 (√(1+sinx) - √(1-sinx)) / tan x
Solution :
= lim x-> 0 (√(1+sinx) - √(1-sinx)) / tan x
By rationalizing the numerator, we get
= lim x-> 0 (1+sinx) - (1-sinx)/tan x(√(1+sinx)+√(1-sinx))
= lim x-> 0 2sinx/tan x(√(1+sinx)+√(1-sinx))
tan x = sin x/cos x
= lim x-> 0 2 cos x/(√(1+sinx)+√(1-sinx))
By applying the limit, we get
= 2 /2
= 1
Hence the value of lim x-> 0 (√(1+sinx) - √(1-sinx)) / tan x is 1.
Problem 4 :
Evaluate the following limit
lim x-> ∞ {(x2 – 2x + 1)/(x2-4x+2))x
Solution :
= lim x-> ∞ {(x2 – 2x + 1)/(x2-4x+2))x
By applying the limit value directly in the given question, we get indeterminant form.
= lim x-> ∞ {(x2 – 2x + 1)/(x2-4x+2))x
= lim x-> ∞ {1 + ((2x - 1)/(x2-4x+2))x}
= lim x-> ∞ {1 + ((2x - 1)/(x2-4x+2))
Let y = (2x- 1)/(x2-4x+2)
If x -> ∞, then y = xx(2- 1/x)/x2(1-4/x+2/x2), y -> 2
= lim y-> 0 {(1 + y)1/y}y
= ey
By applying the value of y, we get
= e2
Hence the value of lim x-> ∞ {(x2 – 2x + 1)/(x2-4x+2))x is e2
Problem 5 :
Evaluate the following limit
lim x-> 0 (ex - e-x) / sin x
Solution :
= lim x-> 0 (ex - e-x) / sin x
= lim x-> 0 (ex - (1/ex)) / sin x
= lim x-> 0 ((ex)2 - 1)/ex sin x
= lim x-> 0 (e2x - 1)/ex sin x
Now we are going to multiply numerator by 2x/2x, sin x by (x/x)
= lim x-> 0 (e2x - 1)(2x/2x)/ex sin x (x/x)
= lim x-> 0 ((e2x - 1)/2x)(2x/x)/(ex (sin x/x))
= 2lim x-> 0 ((e2x - 1)/2x)/lim x-> 0(ex lim x-> 0(sin x/x))
= 2(1)/1(1)
= 2
Hence the value of lim x-> 0 (ex - e-x) / sin x is 2.
Kindly mail your feedback to v4formath@gmail.com
We always appreciate your feedback.
©All rights reserved. onlinemath4all.com
Jan 27, 25 11:30 AM
Jan 27, 25 11:29 AM
Jan 26, 25 07:59 PM