TRIGONOMETRIC RATIOS FOR COMPLEMENTARY ANGLES EXAMPLES

Two acute angles are said to be complementary if the sum of their measures is equal to 90° .

sin θ = cos (90° - θ)  <==> cos θ = sin (90° - θ

cosec θ = sec (90° - θ)  <==> sec θ = cosec (90° - θ

tan θ = cot (90° - θ)  <==> cot θ = tan (90° - θ)

Example 1 :

Find the value of the following.

(cos 47/sin 43)2 + (sin 72/cos 18)2 - 2cos2 45

Solution :

  =  (cos 47/sin 43)+ (sin 72/cos 18)2 - 2cos2 45

Using cos θ = sin (90 - θ)

cos 47  = sin (90 - 47)

cos 47  =  sin 43

Using sin θ = cos (90 - θ)

sin 72  =  cos (90 - 72)

sin 72  =  cos 18

cos 45  =  1/√2

 =  (sin 43/sin 43)+ (cos 18/cos 18)2 - 2 (1/√2)2

  =  1+ 12 - 1

 =  1

Example 2 :

Find the value of the following.

(cos 70/sin 20)+ (cos 59/sin 31)2 + cos θ/sin(90-θ) - 8 cos2 60

Solution :

L.H.S :

 =  (cos 70/sin 20)+ (cos 59/sin 31)2 + cos θ/sin(90-θ) - 8 cos2 60

Using cos θ = sin (90 - θ)

cos 70 = sin (90 - 70)

cos 70 = sin 20

Using sin θ = cos (90 - θ)

cos 59 = sin (90 - 59)

cos 59 = sin 31

sin(90 - θ)  =  cos θ

cos2 60  =  (1/2)=  1/4

= (sin 20/sin 20)+ (sin 31/sin 31)2 + (cos θ/cosθ) - 8(1/4)

  =  1 + 1 + 1 - 2

  =  3 - 2

  =  1

Example 3 :

Find the value of the following.

tan 15° tan 30° tan 45° tan 60° tan 75°

Solution :

  =  tan 15° tan 30° tan 45° tan 60° tan 75°

tan 75°  =  cot (90 - 15)  =  cot 15

tan 30°  =  1/√3, tan 45°  =  1, tan 60°  =  √3

  =  tan 15° (1/√3) 1 (√3) cot 15°

  =  tan 15° (1/tan 15°)

  =  1

Example 4 :

Find the value of the following.

 [cot θ / tan (90 - θ)] + [cos (90 - θ) tan θ sec(90 - θ)/sin (90 - θ) cot (90 - θ) cosec (90 - θ)]

Solution :

=  [cot θ / tan (90 - θ)] + [cos (90 - θ) tan θ sec(90 - θ)/sin (90 - θ) cot (90 - θ) cosec (90 - θ)]

= [cot θ/cot θ+ [sin θ tan θ cosec θ/cos θ tan θ sec θ]

= 1 + (sin θ cosec θ/cos θ sec θ)

= 1 + 1

 = 2

Without using trigonometric tables, evaluate :

Example 5 :

sin 16°/cos 74°

Solution :

= sin 16°/cos 74° ----(1)

sin 16 = cos (90 - 16)

sin 16 = cos 74

Applying the value of sin 16, we get

= cos 74/cos 74

= 1

Example 6 :

sec 11°/cosec 79°

Solution :

= sec 11°/cosec 79° ----(1)

sec 11 = cosec (90 - 11)

sec 11 = cosec 79

Applying the value of sin 11, we get

= cosec 79/cosec 79

= 1

Example 7 :

cos 35°/sin 55°

Solution :

= cos 35°/sin 55° ----(1)

cos 35 = sin (90 - 35)

cos 35 = sin 55

Applying the value of cos 35, we get

= sin 55/sin 55

= 1

Without using trigonometric tables, prove the following :

Example 8 :

cos 81 - sin 9 = 0

Solution :

L.H.S

cos 81 - sin 9 -----(1)

cos 81 = sin (90 - 81)

= sin 9

applying the value of cos 81 in (1), we get

= sin 9 - sin 9

= 0

R.H.S

Hence proved.

Example 9 :

cosec 80 - sec 10 = 0

Solution :

L.H.S

= cosec 80 - sec 10 -----(1)

cosec 80 = sec (90 - 80)

= sec 10

applying the value of cosec 80 in (1), we get

= sec 10 - sec 10

= 0

R.H.S

It is proved.

Example 10 :

cosec2 72 - tan2 18 = 1

Solution :

L.H.S

= cosec2 72 - tan2 18 -----(1)

cosec 72 = sec (90 - 72)

= sec 18

Then, cosec2 72 = sec2 18

Applying the value of cosec2 72 in (1), we get

sec2 18 - tan2 18

= 1

R.H.S

It is proved.

Example 11 :

cosec2 72 - tan2 18 = 1

Solution :

L.H.S

= cosec2 72 - tan2 18 -----(1)

cosec 72 = sec (90 - 72)

= sec 18

cosec2 72 = sec2 18

Applying the value of cosec2 72 in (1), we get

= sec2 18 - tan2 18

Using sec2 θ - tan2 θ = 1

= 1

Without using trigonometric tables, prove that:

Example 12 :

sin 53° cos 37° + cos 53° sin37° = 1

Solution :

L.H.S

= sin 53° cos 37° + cos 53° sin37°

sin 53 = cos (90 - 53)

sin 53 = cos 37

cos 53 = sin (90 - 53)

cos 53 = sin 37

= cos 37° cos 37° + sin 37° sin 37°

= (cos 37°)2 + (sin 37°)2

= cos237° + sin237°

= 1

R.H.S

Example 13 :

cos 54° cos 36° − sin 54° sin36° = 0

Solution :

L.H.S

= cos 54° cos 36° − sin 54° sin 36°

cos 54° = sin (90 - 54)

= sin 36

sin 54° = cos (90 - 54)

= cos 36

Applying the value of cos 54 and sin 54, we get

= sin 36° cos 36° − cos 36° sin 36°

= 0

R.H.S

Hence it is proved

Example 14 :

 sec 70° sin 20° + cos 20° cosec70° = 2

Solution :

L.H.S

=  sec 70° sin 20° + cos 20° cosec 70° ---(1)

sec 70° = cosec (90 - 70)

= cosec 20

cosec 70° = sec (90 -70)

= sec 20°

applying these values in (1), we get

= cosec 20° sin 20° + cos 20°sec 20°

= (1/sin 20)° sin 20° + cos 20°(1/cos 20°)

= 1 + 1

= 2

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. AP Calculus AB Problems with Solutions (Part - 8)

    Jan 30, 25 09:48 AM

    AP Calculus AB Problems with Solutions (Part - 8)

    Read More

  2. SAT Math Resources (Videos, Concepts, Worksheets and More)

    Jan 29, 25 06:00 AM

    SAT Math Resources (Videos, Concepts, Worksheets and More)

    Read More

  3. Digital SAT Math Problems and Solutions (Part - 105)

    Jan 29, 25 05:52 AM

    digitalsatmath106.png
    Digital SAT Math Problems and Solutions (Part - 105)

    Read More