TRIGONOMETRIC RATIOS OF 90 DEGREE PLUS THETA 

Trigonometric ratios of 90 degree plus theta is a part of ASTC formula in trigonometry. 

Trigonometric ratios of 90 degree plus theta are given below.

sin (90° + θ)  =  cos θ

cos (90° + θ)  =  - sin θ

tan (90° + θ)  =  - cot θ

csc (90° + θ)  =  sec θ

sec (90° + θ)  =  - csc θ

cot (90° + θ)  =  - tan θ

Let us see, how the trigonometric ratios of 90 degree plus theta are determined. 

To know that, first we have to understand ASTC formula. 

The ASTC formula can be remembered easily using the following phrases.

"All Sliver Tea Cups" 

or

"All Students Take Calculus"

ASTC formla has been explained clearly in the picture shown below.

More clearly 

From the above picture, it is very clear that 

(90° + θ) falls in the second quadrant

In the second quadrant (90° + θ), sin and csc are positive and other trigonometric ratios are negative.

Important Conversions

When we have the angles 90° and 270° in the trigonometric ratios in the form of

(90° + θ)

(90° - θ)

(270° + θ)

(270° - θ)

We have to do the following conversions, 

sin θ <------> cos θ

tan θ <------> cot θ

csc θ <------> sec θ

For example,

sin (270° + θ)  =  - cos θ

cos (90° - θ)  =  sin θ

For the angles 0° or 360° and  180°, we should not make the above conversions. 

Evaluation of Trigonometric Ratios using ASTC formula - Examples

Example 1 :

Evaluate : sin (90° + θ)

Solution :

To evaluate sin (90° + θ), we have to consider the following important points. 

(i)  (90° + θ) will fall in the II nd quadrant. 

(ii)  When we have 90°, "sin" will become "cos".

(iii)  In the II nd quadrant, the sign of "sin" is positive. 

Considering the above points, we have 

sin (90° + θ)  =  cos θ

Example 2 :

Evaluate : cos (90° + θ)

Solution :

To evaluate cos (90° + θ), we have to consider the following important points. 

(i)  (90° + θ) will fall in the II nd quadrant. 

(ii)  When we have 90°, "cos" will become "sin".

(iii)  In the II nd quadrant, the sign of "cos" is negative. 

Considering the above points, we have 

cos (90° + θ)  =  - sin θ

Example 3 :

Evaluate : tan (90° + θ)

Solution :

To evaluate tan (90° + θ), we have to consider the following important points. 

(i)  (90° + θ) will fall in the II nd quadrant. 

(ii)  When we have 90°, "tan" will become "cot".

(iii)  In the II nd quadrant, the sign of "tan" is negative. 

Considering the above points, we have 

tan (90° + θ)  =  - cot θ

Example 4 :

Evaluate : csc (90° + θ)

Solution :

To evaluate csc (90° + θ), we have to consider the following important points. 

(i)  (90° + θ) will fall in the II nd quadrant. 

(ii)  When we have 90°, "csc" will become "sec".

(iii)  In the II nd quadrant, the sign of "csc" is positive. 

Considering the above points, we have 

csc (90° + θ)  =  sec θ

Example 5 :

Evaluate : sec (90° + θ)

Solution :

To evaluate sec (90° + θ), we have to consider the following important points. 

(i)  (90° + θ) will fall in the II nd quadrant. 

(ii)  When we have 90°, "sec" will become "csc".

(iii)  In the II nd quadrant, the sign of "sec" is negative. 

Considering the above points, we have 

sec (90° + θ)  =  - csc θ

Example 6 :

Evaluate : cot (90° + θ)

Solution :

To evaluate cot (90° + θ), we have to consider the following important points. 

(i)  (90° + θ) will fall in the II nd quadrant. 

(ii)  When we have 90°, "cot" will become "tan"

(iii)  In the II nd quadrant, the sign of "cot" is negative. 

Considering the above points, we have 

cot (90° + θ)  =  - tan θ

To more about ASTC formula, 

Please click here

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. SAT Math Resources (Videos, Concepts, Worksheets and More)

    Jan 24, 25 12:35 PM

    SAT Math Resources (Videos, Concepts, Worksheets and More)

    Read More

  2. Digital SAT Math Problems and Solutions (Part - 102)

    Jan 24, 25 12:30 PM

    digitalsatmath102.png
    Digital SAT Math Problems and Solutions (Part - 102)

    Read More

  3. Solving Equations with the Given Roots

    Jan 23, 25 04:57 AM

    Solving Equations with the Given Roots

    Read More