Question 1 :
Prove that tan (π/4 + θ) tan (3π/4 + θ) = −1.
Answer :
tan (π/4 + θ) = (tan π/4 + tan θ) / (1 - tan π/4 tan θ)
tan (π/4 + θ) = (1 + tan θ) / (1 - tan θ) -----(1)
tan (3π/4 + θ) = (tan 3π/4 + tan θ) / (1 - tan 3π/4 tan θ)
= (-1 + tan θ) / (1 - (-1) tan θ)
tan (3π/4 + θ) = (tan θ - 1) / (1 + tan θ) -----(2)
(1) ⋅ (2)
= [(1 + tan θ) / (1 - tan θ)] ⋅ [(tan θ - 1) / (1 + tan θ) ]
= (tan θ - 1) / (1 - tan θ)
= -1
Hence proved.
Question 2 :
Find the values of tan(α+β), given that cot α = 1/2, α ∈ (π, 3π/2) and sec β = −5/3, β ∈ (π/2, π).
Answer :
tan (α+β) = (tan α + tan β) / (1 - tan α tan β)
cot α = 1/2 α lies in 3rd quadrant tan α = 2 |
sec β = −5/3 β lies in 2nd quadrant tan β = √(sec2 β - 1) = √(-5/3)2- 1) = √(25/9)- 1) = √16/9 tan β = - 4/3 |
= (2 + (-4/3)) / (1 - 2 (-4/3))
= (6 - 4)/3 / (1 + (8/3))
= (2/3) / (11/3)
= 2/11
Hence the answer is 2/11.
Question 3 :
If θ + φ = α and tan θ = k tan φ, then prove that
sin(θ − φ) = [(k − 1)/(k + 1)]sin α
Answer :
Given that :
θ + φ = α and tan θ = k tan φ
tan θ/tan φ = k /1
a/b = c/d ==> (a - b)/(a + b) = (c - d)/(c + d)
tan θ/tan φ = k /1
(tan θ - tan φ) / (tan θ + tan φ) = (k - 1)/(k + 1) ---(1)
tan θ - tan φ = (sin θ / cos θ) - (sin φ / cos φ)
= (sin θcos φ - cos θsin φ) / cos θ cos φ
tan θ - tan φ = sin (θ - φ)
tan θ + tan φ = (sin θ / cos θ) + (sin φ / cos φ)
= (sin θcos φ + cos θsin φ) / cos θ cos φ
tan θ + tan φ = sin (θ + φ)
tan θ + tan φ = sin α
Applying the values of tan θ - tan φ and tan θ + tan φ in (1), we get
sin (θ - φ)/sin α = (k - 1)/(k + 1)
sin (θ - φ) = [(k - 1)/(k + 1)] sin α
Hence proved
Kindly mail your feedback to v4formath@gmail.com
We always appreciate your feedback.
©All rights reserved. onlinemath4all.com
Nov 05, 24 11:16 AM
Nov 05, 24 11:15 AM
Nov 02, 24 11:58 PM