USE THE EUCLIDEAN ALGORITHM TO FIND GCD OF THE GIVEN POLYNOMIALS

Step 1 :

First, divide f(x) by g(x) to obtain

f(x) = g(x)q(x)+ r(x)

where q(x) is the quotient and r(x) is remainder,

so,  deg (g(x)) > deg (r(x))

If the remainder r(x) is 0, then g(x) is the GCD of f(x) and g(x).

Step 2 :

If the remainder r(x) is non-zero, divide g(x) by r(x) to obtain

g(x)  = r(x) q(x)+ r1(x)

where r1(x) is the remainder.

So, deg r(x) > deg r1(x)

If the remainder r1(x) is 0, then r(x) is the required GCD.

Step 3 :

If r1(x) is non-zero, then continue the process until we get zero as remainder.

The remainder in the last but one step is the GCD of f(x) and g(x).

We write GCD(f(x), g(x)) to denote the GCD of the polynomials f(x) and g(x).

Find the GCD of the following pairs of polynomials using division algorithm

(i)  x3-9x2+23x-15 and 4x2-16x+12

(ii)  3x3+18x2+33x+18, 3x2+13x+10

(iii)  2x3+2x2+2x+2,  6x3+12x2+6x+12

(iv)  x3-3x2+4x-12, x4+x3+4x2+4x

(i) Answer :

x3-9x2+23x-15 and 4x2-16x+12

Let f(x)  =  x3-9x2+23x-15 and

g(x)  =  4x2-16x+12

g(x)  =  4(x2-4x+3)

Here, deg(f(x)) > deg (g(x))

By dividing f(x) by g(x), we get 0 as remainder. So, the required GCD is x-5.

(ii) Answer :

3x3+18x2+33x+18, 3x2+13x+10

Let f(x)  =  3x3+18x2+33x+18 and g(x)  =  3x2+13x+10

Here, deg f(x) > deg g(x)

By dividing f(x) by g(x) we are not getting zero. So, we have to do this long division once again.

Now we are taking 4/3 as common from the remainder. So that we are getting (4/3)(x+1)

So, the greatest common divisor is x+1.

(iii) Answer :

2x3+2x2+2x+2,  6x3+12x2+6x+12

Let f(x) = 2x3+2x2+2x+2 and g(x)  =  6x3+12x2+6x+12

f(x)  =  2(x3+x2+x+1)

g(x)  =  6(x3+2x2+x+2)

Since we are not getting zero, we have to do this long division once again

So, the required GCD is 2 (x2+1).

(iv) Answer :

x3-3x2+4x-12, x4+x3+4x2+4x

Let f(x)  =  x3-3x2+4x-12 and g(x)  =  x4+x3+4x2+4x

f(x)  =  x3-3x2+4x-12

g (x)  =  x(x3+x2+4x+4)

Here, deg (f(x))  =  deg (g(x)) 

Since we are not getting zero, we have to do this long division once again

So, the required GCD is (x2+4). 

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. AP Calculus AB Problems with Solutions (Part - 5)

    Jan 06, 25 05:53 AM

    AP Calculus AB Problems with Solutions (Part - 5)

    Read More

  2. ALGEBRA - II : Simplifying Complex Fractions Problems and Solutions

    Jan 06, 25 02:23 AM

    ALGEBRA - II : Simplifying Complex Fractions Problems and Solutions

    Read More

  3. ALGEBRA - II : Factoring Polynomials Problems with Solutions

    Jan 06, 25 02:20 AM

    ALGEBRA - II : Factoring Polynomials Problems with Solutions

    Read More