USING THE FORMULA OF EXPANSION OF BINOMIAL OF POWER 3

(a + b)3  =  a3 + 3a2b + 3ab2 + b3

(a - b)3  =  a3 - 3a2b + 3ab2 - b3

(a3 + b3)  =  (a + b)3 - 3ab(a + b)

(a3 - b3)  =  (a - b)3 - 3ab(a - b)

Example 1 :

Find x3 - y3, if  x - y  =  5 and xy  =  14

Solution :

x3 - y3, if  x - y  =  5 and xy  =  14

(a3 - b3)  =  (a - b)3 + 3ab(a - b)

(x3 - y3)  =  (x - y)3 + 3xy(x - y)

By using the given values, we get

(x3 - y3)  =  53 + 3(14)(5)

=  125 + 210

=  335

Example 2 :

If a + (1/a)  =  6, then find the value of a3 + 1/a3

Solution :

(a3 + b3)  =  (a + b)3 - 3ab(a + b)

a3 + (1/a)3  =   (a + (1/a))3 - 3a(1/a)(a + (1/a))

  =  63 - 3(6)

  =  216 - 18

  =  198

Example 3 :

If x2 + 1/x2  =  23, then find the value of x + (1/x) and x3 + (1/x3)

Solution :

a2 + b2  =  (a + b)2 - 2ab

x2 + (1/x)2  =  (x + (1/x))2 - 2x(1/x)

23  =  (x + (1/x))2 - 2

23 + 2  =  (x + (1/x))2

 (x + (1/x))=  25

x + (1/x)  =  5

x3 + (1/x)3  =  (x + (1/x))3 - 3x(1/x)(x + (1/x))

  =  53 - 3(5)

  =  125 - 15

  =  105

Hence the values of x + (1/x) and x3 + (1/x)3 are 5 and 105 respectively.

Example 4 :

If (y - (1/y))3  =  27, then find the value of y3 - (1/y)3

Solution :

(a3 - b3)  =  (a - b)3 - 3ab(a - b)

Given that :

(y - (1/y))3  =  27

(y - (1/y))3  =  33

(y - (1/y))  =  3

(y3 - (1/y)3)  =  (y - (1/y))3 - 3y(1/y)(y - (1/y))

  =  27 - 3(3)

  =  27 - 9

  =  18

Hence the value of (y3 - (1/y)3)  is 18.

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. SAT Math Resources (Videos, Concepts, Worksheets and More)

    Nov 23, 24 10:01 AM

    SAT Math Resources (Videos, Concepts, Worksheets and More)

    Read More

  2. Digital SAT Math Problems and Solutions (Part - 76)

    Nov 23, 24 09:45 AM

    digitalsatmath63.png
    Digital SAT Math Problems and Solutions (Part - 76)

    Read More

  3. Digital SAT Math Problems and Solutions (Part - 75)

    Nov 21, 24 06:13 AM

    digitalsatmath62.png
    Digital SAT Math Problems and Solutions (Part - 75)

    Read More