VOLUME OF 3D SHAPES QUESTIONS WITH ANSWERS

Volume  =  Πr2h

Volume  =  Πh(R2 - r2)

Volume  =  (1/3) Πr2h

Volume  =  (4/3) Πr3

Volume of hollow sphere

  =  (4/3) Π(R3 - r3)

Volume  =  (2/3) Πr3

Volume = (2/3)Π(R3 - r3)

Volume

(1/3)Πh(R2 + r2 + Rr)

Example 1 :

A right angled triangle whose sides are 6 cm, 8 cm and 10 cm is revolved about the sides containing the right angle in two ways. Find the difference in volumes of the two solids so formed.

Solution :

The longest side of a triangle is 10 cm

If the triangle is revolved about 6 cm

r = 6 cm and h = 8 cm

Volume of solid, when it is revolved about 6 cm,

  =  (1/3)πr2h

  =  (1/3)π 6(8)

  =  96π cm3

Volume of solid, when it is revolved about 8 cm,

r = 8 cm and h = 6 cm

  =  (1/3)πr2h

  =  π 8(6)

  =  128π cm3

Difference  =  128π - 96π

  =  32π cm3

  =  32(22/7)

=  100.5 cm3

Example 2 :

The volumes of two cones of same base radius are 3600 cm3 and 5040 cm3. Find the ratio of heights.

Solution :

Let "h1" and "h2" be the heights of 1st and 2nd cone.

Volume of 1st cone  =  3600 cm3

 (1/3)πr2h1  =  3600 cm3

Volume of 2nd cone  =  5040 cm3

 (1/3)πr2h2  =  5040 cm3

h1 : h2  =  3600 : 5040

h1 / h2  =  3600 / 5040

h1 : h2  =  5 : 7

Example 3 :

If the ratio of radii of two spheres is 4 : 7, find the ratio of their volumes.

Solution :

Radius of 1st sphere (r1) =  4x

Radius of 2nd sphere  (r2)  =  7x

Volume of sphere  =  (4/3) πr3

(4/3) πr13 (4/3) πr13

(4x)3 : (7x)3

64 : 343

Example 4 :

A solid sphere and a solid hemisphere have equal total surface area. Prove that the ratio of their volume is 3 : 4 .

Solution :

Total surface area of sphere = 4πr12

Total surface area of hemisphere = 3πr22

4πr12= 3πr22

r12= (3/4)r22

r1  = (√3/2)r2

Volume of sphere  =  (4/3) πr13

Volume of hemisphere  =  (2/3) πr13

  (4/3) πr13 : (2/3) πr23

  2((√3/2))3 : r23

  2(3√3/8)  r23: r23

  3√3 : 4

Hence it is proved.

Example 5 :

The outer and the inner surface areas of a spherical copper shell are 576π cm2 and 324π cm2 respectively. Find the volume of the material required to make the shell.

Solution :

Outer curved surface area of sphere  =  4πR2

Inner curved surface area of sphere  =  4πr2

4πR=  576π

R2  =  576/4  =  144

R  =  12

4πr2  =  324π

r2  =  324/4  =  81

r  =  9

Volume of sphere  =  (4/3) π (R3 - r3)

  =  (4/3) π (123 - 93)

  =  (4/3) π (1728 - 729)

  =  (4/3) π (999)

=  1332(22/7)

=  4186.28 cm3

Example 6 :

A container open at the top is in the form of a frustum of a cone of height 16 cm with radii of its lower and upper ends are 8 cm and 20 cm respectively. Find the cost of milk which can completely fill a container at the rate of 40 per liter.

Solution :

Volume of milk in the frustum container 

  = (1/3)Πh(R+ r2 + Rr)

h = 16 cm, r = 8 cm, R = 20 cm

  = (1/3)Π (16)(20+ 82 + 20(8)) - Πr2

  =  (22/7) [(1/3)(16)(20+ 82 + 20(8)) - 64]

  =  (22/7) [(1/3)(16)(624) - 64]

  =  (22/7) [3264]

  =  10258.28 cm3

1000 cm3  =  1 liter

  =  10.25828 liter

Cost per liter  =  ₹40

  =  40(10.258)

  =  ₹410.32

Example 7 :

If each side of a cube is increased by 10%. What is the percentage increase in surface area of the cube ?

Solution :

Side length of the cube = x

Side length is increased by 10%. Then new side length = 110% of x

= 1.10x

Surface area of cube = 6a2

= 6(1.10x)2

= 6(1.21x2)

= 7.26x2

Percentage increase or decrease

= { |old value - new value| / old value } x 100%

= {|7.26x26x2| / 6x2x 100%

= {1.26x2/6x2x 100%

= 0.21x2 x 100%

= 21%

Example 8 :

The internal and external diameters of hollow hemispherical vessel are 24 cm and 25 cm respectively. If the cost of painting 1cm2 surface area is $1.5, find the total cost of painting the vessel all over.

Solution :

Internal diameter = 24 cm

radius (r) = 12 cm

External diameter = 25 cm

Radius (R) = 25/2

Surface area of hemisphere = 2Π(R2 - r2)

= 2 x (22/7) x ((25/2)2 - 122)

= 2 x (22/7) x ((625 - 576)/4)

= 2 x (22/7) x (49/4)

= 77 cm2

Total cost of painting = 1.5 x 77

= $115.5

Example 9 :

The surface area of a sphere of radius 5 cm is five times the area of the curved surface area of a cone of radius 4cm. Find the height of the cone

Solution :

Surface area of sphere = 5(surface area of cone)

4πr2  5(πrl)

radius of sphere = 5 cm

radius of cone = 4 cm

height of cone = h

l = ?

4π(5)2  5(π(4)l)

100 / 20 = l

l = 5 cm

l² = h² + r²

5² = 4² + h²

h² = 25 - 16

h = 3 cm

So, height of the cone is 3 cm.

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. SAT Math Resources (Videos, Concepts, Worksheets and More)

    Nov 23, 24 10:01 AM

    SAT Math Resources (Videos, Concepts, Worksheets and More)

    Read More

  2. Digital SAT Math Problems and Solutions (Part - 76)

    Nov 23, 24 09:45 AM

    digitalsatmath63.png
    Digital SAT Math Problems and Solutions (Part - 76)

    Read More

  3. Digital SAT Math Problems and Solutions (Part - 75)

    Nov 21, 24 06:13 AM

    digitalsatmath62.png
    Digital SAT Math Problems and Solutions (Part - 75)

    Read More