Prove each of the following.
Problem 1 :
(1 - cos2θ)(1 + cot2θ) = 1
Problem 2 :
sin2θ + tan2θ = sec2θ - cos2θ
Problem 3 :
secθ - tanθsinθ = cosθ
Problem 4 :
sin4θ + cos4θ = 1 - 2sin2θcos2θ
Problem 5 :
Problem 6 :
Problem 7 :
sin4θ - cos4θ = sin2θ - cos2θ
Problem 8 :
Problem 9 :
(secθ + cosθ)(secθ - cosθ) = tan2θ + sin2θ
Problem 10 :
1. Answer :
(1 - cos2θ)(1 + cot2θ) :
= (sin2θ)(csc2θ)
2. Answer :
sin2θ + tan2θ :
= 1 - cos2θ + sec2θ - 1
= -cos2θ + sec2θ
= sec2θ - cos2θ
3. Answer :
secθ - tanθsinθ :
= cosθ
4. Answer :
sin4θ + cos4θ :
= (sin2θ)2 + (cos2θ)2
Using a2 + b2 = (a + b)2 - 2ab,
= (sin2θ + cos2θ)2 - 2sin2θcos2θ
= 12 - 2sin2θcos2θ
= 1 - 2sin2θcos2θ
5. Answer :
= secθ - tanθ
6. Answer :
7. Answer :
sin4θ - cos4θ :
= (sin2θ)2 - (cos2θ)2
= (sin2θ + cos2θ)(sin2θ + cos2θ)
= (1)(sin2θ + cos2θ)
= sin2θ + cos2θ
8. Answer :
9. Answer :
(secθ + cosθ)(secθ - cosθ) :
= sec2θ - cos2θ
= 1 + tan2θ - cos2θ
= tan2θ + 1 - cos2θ
= tan2θ + sin2θ
10. Answer :
Kindly mail your feedback to v4formath@gmail.com
We always appreciate your feedback.
©All rights reserved. onlinemath4all.com
Dec 23, 24 03:47 AM
Dec 23, 24 03:40 AM
Dec 21, 24 02:19 AM