X CUBE PLUS Y CUBE PLUS Z CUBE MINUS 3XYZ

x3 + y3 + z3 - 3xyz 

  =  (x + y + z)(x+ y+ z- xy - yz - zx)

Question 1 :

Simplify: 

(i)  (2a + 3b + 4c)(4a2 + 9b2 + 16c2 - 6ab - 12bc - 8ca)

Solution :

  =  (2a + 3b + 4c)(4a2 + 9b2 + 16c2 - 6ab - 12bc - 8ca)

  =  (2a+3b+4c)((2a)2+(3b)2+(4c)2-(2a)(3b)-(4b)(4c)-(4c)(2a))

  =  (2a)3 + (3b)3 + (4c)3 - 3(2a)(3b)(4c)

  =  8a3 + 27b3 + 64c3 - 72abc

(ii) (x −2y + 3z)(x2 + 4y2 + 9z2 + 2xy + 6yz −3xz)

Solution :

  =  (x −2y + 3z)(x2 + 4y2 + 9z2 + 2xy + 6yz −3xz)

  =  (x−2y+3z)(x2+(-2y)2+(3z)2-x(-2y)-(-2y)(3z)−(3z)(x))

  =  x+ (-2y)+ (3z)3- 3(x) (-2y)(3z)

  =  x- 8y+ 27z+ 18xyz

Question 2 :

By using identity evaluate the following:

(i) 73 - 103 + 33

Solution :

From the formula

x3 + y3 + z3 - 3xyz 

  =  (x + y + z)(x+ y+ z- xy - yz - zx)

If x + y + z  =  0, then x3 + y3 + z3 = 3xyz 

x = 7, y = -10 and z = 3

x + y + z  =  7 - 10 + 3  =  0

73 - 103 + 3=  3(7)(-10)(3)  =  -630

(ii)  1 + (1/8) - (27/8)

Solution :

Given that :

1 + (1/2)3 + (-3/2)3

If x + y + z  =  0, then x3 + y3 + z3 = 3xyz 

x = 1, y = 1/2 and z = -3/2

x + y + z  =  1 + (1/2) + (-3/2)  =  0

1 + (1/2)3 + (-3/2)=  3(1) (1/2)(3/2)

=  9/4

Question 3 :

If 2x −3y −4z = 0 , then find 8x3 - 27y3 - 64z3

Solution :

x = 2x, y = -2y and z = -4z

If x + y + z  =  0, then x3 + y3 + z3 = 3xyz 

8x3 - 27y3 - 64z=  3(2x)(-2y)(-4z)

  =  48xyz

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. SAT Math Resources (Videos, Concepts, Worksheets and More)

    Nov 23, 24 10:01 AM

    SAT Math Resources (Videos, Concepts, Worksheets and More)

    Read More

  2. Digital SAT Math Problems and Solutions (Part - 76)

    Nov 23, 24 09:45 AM

    digitalsatmath63.png
    Digital SAT Math Problems and Solutions (Part - 76)

    Read More

  3. Digital SAT Math Problems and Solutions (Part - 75)

    Nov 21, 24 06:13 AM

    digitalsatmath62.png
    Digital SAT Math Problems and Solutions (Part - 75)

    Read More