Adding polynomials and subtracting polynomials is nothing but combining the like terms.
Let us consider the following problem.
Add : (3x³-5x²+ 2x-7) and (4x²+x-8)
Here we give step by step explanation for adding the above two polynomials.
Step 1 :
Before going to add two polynomials, first we have to arrange the given polynomials one by one from highest power to lowest power.
(3x³-5x²+ 2x-7) and (4x²+x-8)
The two given polynomials are already in the arranged form.So we can leave it as it is.
Step 2 :
Now we have to write the like terms together starting from the highest power to lowest power.
= (3x³-5x²+ 2x-7) + (4x²+ x - 8)
Step 3:
Combine the like terms (Add or subtract) based on the signs of those terms.
In the second polynomial,we do not have x³ term,so we have to consider that there is zero x³.
So the final answer is 3x³ - 1x² + 3x - 15
Example :
Add ( 7p³ + 4p²- 8p + 1 ) and (3p³- 5p²- 10p + 5)
Solution :
Step 1:
The two given polynomials are already in the arranged form.So we can leave it as it is.
= ( 7p³ + 4p²- 8p + 1) + (3p³ - 5p² - 10p + 5)
Step 2 :
Now we have to write the like terms together starting from the highest power to lowest power.
= 7p³ + 3p³ + 4p²- 5p²- 8p - 10p + 1 + 5
So the final answer is 10p³- 1p²- 18p + 6
Example :
Subtract the following polynomials:
(2 x³ - 2 x² + 4 x - 3)- (x³ + x² - 5 x + 4)
Solution :
Step 1:
In the first step we are going to multiply the negative with inner terms.
= 2 x³ -2 x² + 4 x - 3 - x³-x²+ 5 x - 4
Step 2:
In the second step we have to combine the like terms
= 2 x³ - x³ - 2 x²- x² + 4 x + 5 x - 3 - 4
Step 3:
After combining the like terms we will get the answer
= x³ - 3 x² + 9x - 7
Problem 1 :
Add ( 2x³ + 5x² - 2x + 7 ) and ( x³ + 4x² - x + 6)
Solution :
= ( 2x³ + 5x² - 2x + 7 ) + ( x³ + 4x² - x + 6)
= 2x³ + 5x² - 2x + 7 + x³ + 4x² - x + 6
= 2x³ + x³ + 5x² + 4x² - 2x - x + 7 + 6
= 3x³ + 9x² - 3x + 13
Problem 2 :
Add ( 3x³ - 2x² - x + 4 ) and ( 2x³ + 7x² - 3x - 3 )
Solution :
= (3x³ - 2x² - x + 4) + (2x³ + 7x² - 3x - 3)
= 3 x³ - 2 x² - x + 4 + 2 x³ + 7 x² - 3 x - 3
= 3x³ + 2x³ - 2x² + 7x² - x - 3x + 4 - 3
= 5x³ + 5x² - 4x + 1
Problem 3 :
Add 2( x³ - x² + 6x - 2 ) and ( 5x⁶ + 7x⁵ - 3x - 3 )
Solution :
= 2( x³ - x² + 6 x - 2 ) + ( 5 x⁶ + 7 x⁵ - 3 x - 3 )
= 2x³ - 2x² + 12x - 4 + 5x⁶ + 7x⁵ - 3x - 3
= 5x⁶ + 7x⁵ + 2x³ - 2x² + 12x - 3x - 4 - 3
= 5x⁶ + 7x⁵ + 2x³ - 2x² + 9x - 7
Problem 4 :
Add -1( x⁶ + x³ + 6x² - 2 ) and 2( 5x⁶ + 7x⁵ - 3x - 3 )
Solution :
= -1( x⁶ + x³ + 6x² - 2 ) + 2( 5x⁶ + 7x⁵ - 3x - 3 )
= -x⁶ - x³ - 6x² + 2 + 10x⁶ + 14x⁵ - 6x - 6
= -x⁶ + 10x⁶ + 14x⁵ - x³ - 6x² - 6x + 2 - 6
= 9x⁶ + 14x⁵ - x³ - 6x² - 6x - 4
Problem 5 :
Add 5( 5x⁶ + 2x³ - 6x² - 2 ) + 6(-3x⁶ + 2x⁵ + 2x + 1 )
Solution :
= 5( 5x⁶ + 2x³ - 6x² - 2 ) + 6( -3x⁶ + 2x⁵ + 2x + 1 )
= 25x⁶ + 10x³ - 30x² - 10 -18x⁶ + 12x⁵ + 12x + 6
= 25x⁶ -18x⁶ + 12x⁵ + 10x³ - 30x² + 12x -10 + 6
= 7x⁶ + 12x⁵ + 10x³ - 30x² + 12x - 4
Question 1 :
Subtract 2x³ + 5x² - 2x - 11 from 3x³ - 2x² - 5x - 6
Solution :
= ( 3x³ - 2x² - 5x - 6 ) - ( 2x³ + 5x² - 2x - 11 )
= 3x³ - 2x² - 5x - 6 -2x³ - 5x² + 2x + 11
= 3x³ - 2x³ - 2x² - 5x² - 5x + 2x - 6 + 11
= x³ - 7x² - 3x + 5
Question 2 :
Subtract x³ + 4x² - 12x - 5 from 5x³ + 3x² + 2x - 10
Solution :
= ( 5x³ + 3x² + 2x - 10 ) - ( x³ + 4x² - 12x - 5 )
= 5x³ + 3x² + 2x - 10 - x³ - 4x² + 12x + 5
= 5x³ - x³ + 3x² - 4x² + 2x + 12x - 10 + 5
= 4x³ - x² + 14x - 5
Question 3 :
Subtract 12x³ + 14x² + 17x - 12 from 15x³+22x²+17x-19
Solution :
= ( 15x³ + 22x² + 17x - 19 ) - ( 12x³ + 14x² + 17x - 12 )
= 15x³ + 22x² + 17x - 19 - 12x³ - 14x² - 17x + 12
= 15x³ - 12x³ + 22x² - 14x² + 17x - 17x - 19 + 12
= 3x³ + 8x² + 0x - 7
= 3x³ + 8x² - 7
Question 4 :
Subtract 5x³ + 3x² + 7x - 6 from 3x³ + 2x² + 6x - 4
Solution :
= ( 3x³ + 2x² + 6x - 4 ) - ( 5x³ + 3x² + 7x - 6 )
= 3x³ + 2x² + 6x - 4 - 5x³ - 3x² - 7x + 6
= 3x³ - 5x³ + 2x² - 3x² + 6x - 7x - 4 + 6
= -2x³ - x² - x + 2
Question 5 :
Subtract x³ + 32x² + 17x - 16 from 13x³+23x²+16x-14
Solution :
= ( 13x³ + 23x² + 16x - 14 ) - ( x³ + 32x² + 17x - 16 )
= 13x³ + 23x² + 16x - 14 - x³ - 32x² - 17x + 16
= 13x³ - x³ + 23x² - 32x² + 16x - 17x - 14 + 16
= 12x³ - 9x² - x + 2
Kindly mail your feedback to v4formath@gmail.com
We always appreciate your feedback.
©All rights reserved. onlinemath4all.com
Dec 23, 24 03:47 AM
Dec 23, 24 03:40 AM
Dec 21, 24 02:19 AM