ADDING AND SUBTRACTING WITH SCIENTIFIC NOTATION WORKSHEET

Problem 1 :

Evaluate :

(1.328 x 107) + (2.034 x 105)

Problem 2 :

Evaluate :

(3.2 x 10-3) - (8.02 x 10-5)

Problem 3 : 

Simplify the expression given below. 

(0.723 x 108) + (338.2 x 105) - (6.1 x 107)

Problem 4 : 

The table below shows the population of the three largest countries in North America in 2011. Find the total population of these countries.

Detailed Answer Key

Problem 1 :

Evaluate :

(1.328 x 107) + (2.034 x 105)

Give your answer in scientific notation. 

Solution :

(1.328 x 107) + (2.034 x 105)

In the given numbers, we don't have the same exponent for 10.

Adjust the exponents of 10 in the given numbers such that they have the same exponent.

It is easier to adjust the smaller exponent to equal the larger exponent. 

Then, 

=  (1.328 x 107) + (0.02034 x 107)

In the above numbers, we have the same exponent for 10.

So, factor 107 out from the given numbers. 

=  (1.328 + 0.02034) x 107

  =  1.34834 x 107

The above number is in scientific notation.

Therefore, 

(1.328 x 107) + (2.034 x 105)  =  1.34834 x 107

Problem 2 :

Evaluate :

(3.2 x 10-3) - (8.02 x 10-5)

Give your answer in scientific notation. 

Solution :

(3.2 x 10-3) - (8.02 x 10-5)

In the given numbers, we don't have the same exponent for 10.

Adjust the exponents of 10 in the given numbers such that they have the same exponent.

Then, 

=  (3.2 x 10-3) - (0.0802 x 102 x 10-5)

=  (3.2 x 10-3) - (0.0802 x 102-5)

=  (3.2 x 10-3) - (0.0802 x 10-3)

In the above numbers, we have the same exponent for 10.

So, factor 10-3 out from the given numbers. 

=  (3.2 - 0.0802) x 10-3

=  3.1198 x 10-3

Write the above number in scientific notation. 

=  3.1198 x 10-3

Therefore, 

(3.2 x 10-3) - (8.02 x 10-5)  =  3.1198 x 10-3

Problem 3 : 

Simplify the expression given below. 

(0.723 x 108) + (338.2 x 105) - (6.1 x 107)

Solution :

Method 1 :

Step 1 : 

In the given numbers, the highest power of 10 is 8. 

So, write each number with 10 power 8.

0.723 x 108  =  0.723 x 108

338.2 x 105  =  0.3382 x 108

6.1 x 107  =  0.61 x 108

Step 2 : 

Simplify the multipliers.

0.723 + 0.3382 - 0.61  =  0.4512

Step 3 : 

Write the final answer in scientific notation :

0.4512 x 108  =  4.512 x 107

Method 2 :

Step 1 : 

First, write each number in standard notation.

0.723 x 108  =  72,300,000

338.2 x 105  =  33,820,000

6.1 x 10⁷  =  61,000,000

Step 2 : 

Simplify the numbers in standard notation.

72,300,000 + 33,820,000 - 61,000,000  =  45,120,000

Step 3 : 

Write the final answer in scientific notation :

45,120,000  =  4.512 x 107

Problem 4 : 

The table below shows the population of the three largest countries in North America in 2011. Find the total population of these countries.

Solution :

Method 1 :

Step 1 : 

First, write each population with the same power of 10.

United States : 3.1 x 108

Canada : 0.338 x 108

Mexico : 1.1 x 108

Step 2 : 

Add the multipliers for each population.

3.1 + 0.338 + 1.1  =  4.538

Step 3 : 

Write the final answer in scientific notation :

4.538 x 108

Method 2 :

Step 1 : 

First, write each number in standard notation.

United States : 310,000,000

Canada : 33,800,000

Mexico : 110,000,000

Step 2 : 

Find the sum of the numbers in standard notation.

310,000,000 + 33,800,000 + 110,000,000  =  453,800,000

Step 3 : 

Write the final answer in scientific notation :

453,800,000  =  4.538 x 108

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. Digital SAT Math Problems and Solutions (Part - 76)

    Nov 30, 24 07:08 AM

    digitalsatmath63.png
    Digital SAT Math Problems and Solutions (Part - 76)

    Read More

  2. SAT Math Resources (Videos, Concepts, Worksheets and More)

    Nov 30, 24 07:03 AM

    SAT Math Resources (Videos, Concepts, Worksheets and More)

    Read More

  3. Digital SAT Math Problems and Solutions (Part - 79)

    Nov 30, 24 06:47 AM

    digitalsatmath66.png
    Digital SAT Math Problems and Solutions (Part - 79)

    Read More