APPLICATION OF DIFFERENTIATION MAXIMUM AND MINIMUM

Optimization is a process of finding an extreme value (either maximum or minimum) under certain conditions.

A procedure for solving for an extremum or optimization problems.

Step 1 :

Draw an appropriate figure and label the quantities relevant to the problem.

Step 2 :

Find a expression for the quantity to be maximized or minimized.

Step 3 :

Using the given conditions of the problem, the quantity to be extremized .

Step 4 :

Determine the interval of possible values for this variable from the conditions given in the problem.

Step 5 :

Using the techniques of extremum (absolute extremum, first derivative test or second derivative test) obtain the maximum or minimum.

Problem 1 :

Find two positive numbers whose sum is 12 and their product is maximum.

Solution :

Let one number be x. The other number is 12 - x.

Let f(x) be the function

f(x)  =  Product of two numbers

f(x) = x(12 - x)

f(x) = 12x - x2

f'(x) = 12-2x

f'(x) = 0

12-2x = 0

x = 6

f''(x)  =  -2 < 0 Maximum

The first number is 6 and the another number is 6.

Product of two numbers = 36.

Problem 2 :

Find two positive numbers whose product is 20 and their sum is minimum.

Solution :

Let x be the one number, then the another number  =  20/x

Let f(x) be the function.

f(x) = x + (20/x)

f'(x)  =  1 - 20/x2

f'(x)  =  0

1 - 20/x=  0

20/x=  1

x =  20

x  =  2√5

f''(x)  =  -40/x3 < 0

f''(2√5)  =  -1/√5 < 0 (maximum)

Another number  =  20/2√5   =  2√5

So, the sum of numbers  =  2√5 + 2√5  ==>  4√5.

Problem 3 :

Find the smallest possible value of

x2 + y2

given that x + y =10.

Solution :

Let f(x) be the function.

Given :

x+y  =  10

y  =  10-x

f(x)  =  x2 + y2

f(x)  =  x2 + (10-x)2

f(x)  =  x2 + 100+x2-20x

f(x)  =  2x2-20x+100

f'(x)  =  4x-20

f'(x)  =  0

4x-20  =  0

x  =  5

f''(x)  =  4(1) ==>  4  > 0 (Minimum)

y  =  10-x

y  =  10-5

y  =  5

x+ y2  =  52 + 52

x+ y2  =  50

So, the value of x+ y2 is 50.

Problem 4 :

A garden is to be laid out in a rectangular area and protected by wire fence. What is the largest possible area of the fenced garden with 40 meters of wire.

Solution :

Let x and y be the length and width of the rectangle.

2(x + y)  =  40

2x + 2y  =  40

2y  =  40-2x

y  =  20 - x

Area of rectangle  =  x(20 - x)

A(x)  =  20x - x2

A'(x)  =  20 - 2x

A'(x)  =  20-2x  =  0

x  =  10

A''(x)  =  -2 < 0 (Maximum)

y  =  20-10

y  =  10

Area  =  10(10)

=  100 m2

So, area of the rectangle is 100 m2.

Problem 5 :

A square sheet of cardboard with each side a centimeters is to be used to make an open top box by cutting a small square of cardboard from each of the corners and bending up the sides. What is the side length of small squares if the box is to have large a volume as possible ?

Solution :

maximum-minimum-wp-q1

Let x be the side length of small square box.

Volume of the box = length x width x height

= (a - 2x) ⋅ (a - 2x)  x

V(x) = (a - 2x)2 ⋅ x

v'(x) = (a - 2x)2 ⋅ (1) + 2(a - 2x) (-2) x

= (a - 2x)2 - 4x(a - 2x)

= (a - 2x)[a - 2x - 4x]

v'(x) = (a - 2x)(a - 6x)

v'(x) = 0

(a - 2x)(a - 6x) = 0

a - 2x = 0

2x = a

x = a/2

a - 6x = 0

6x = a

x = a/6

v'(x) = (a - 2x)(a - 6x)

v''(x) = (a - 2x)(- 6(1)) + (a - 6x)(0 - 2(1))

= -6(a - 2x) - 2(a - 6x)

= -6a + 12x - 2a + 12x

= -8a + 24x

= 8(3x - a)

When x = a/2

v''(x) = 8(3x - a)

v''(a/2) = 8(3(a/2) - a)

= 8(3a - 2a)/2

= 4a > 0

Minimum

When x = a/6

v''(x) = 8(3x - a)

v''(a/6) = 8(3(a/6) - a)

= 8((a/2) - a)

= 8(a - 2a)/2

= -8a/2

= -4a < 0

Maximum

To find the maximum value of the function, we have to apply x = a/6 in the function V(x) = (a - 2x)2 ⋅ x

V(a/6) = (a - 2(a/6))2 ⋅ (a/6)

= (a - (a/3))2 ⋅ (a/6)

= ((3a - a)/3))2 ⋅ (a/6)

= (2a /3)2 ⋅ (a/6)

= (4a2/9) ⋅ (a/6)

= 2a3/27

So, the maximum volume is 2a3/27

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. Digital SAT Math Problems and Solutions (Part - 134)

    Apr 02, 25 12:40 AM

    digitalsatmath143.png
    Digital SAT Math Problems and Solutions (Part - 134)

    Read More

  2. SAT Math Resources (Videos, Concepts, Worksheets and More)

    Apr 02, 25 12:35 AM

    SAT Math Resources (Videos, Concepts, Worksheets and More)

    Read More

  3. Digital SAT Math Problems and Solutions (Part 135)

    Apr 02, 25 12:32 AM

    digitalsatmath147.png
    Digital SAT Math Problems and Solutions (Part 135)

    Read More