Problem 1 :
A rectangular paddock is 800 m by 1.5 km.
a) Find the area of the paddock in hectares.
b) If fertilizer costs $50 per hectare, how much will it cost to fertilize the paddock?
Problem 2 :
A corn field is 2 km by 3.2 km.
Find :
a) the area of the property in hectares
b) the total cost of sowing a crop if it costs $80 per hectare.
Problem 3 :
A football pitch is 50 m by 90 m.
a) Find the area of the pitch.
b) How long will it take to mow the whole pitch if 60 square meters can be mown each minute?
Problem 4 :
Floor tiles are 20 cm by 30 cm.
a) How many tiles would you need to tile a floor 5 m by 6 m?
b) If each tile costs $6.85, find the total cost of the tiles.
Problem 5 :
A driveway is 23 m long and 3 m wide. Find the total cost of concreting the driveway if the materials cost $20 per square meter and the cost of hiring labor to do the concreting is $25 per square meter.
Problem 6 :
What would be the cost of resurfacing a 50 m by 32 m gymnasium floor with a rubberized compound costing $35.60 a square meter?
Problem 7 :
A farmer has a field that is 300 m long and 70m wide. Calculate the area of the field.
Problem 8 :
A piece of paper has a length of 18 cm and a width of 6cm. Find the area of paper.
Problem 9 :
A rectangular carpet has an area of 20 sq m. If the length is twice the breadth, what is the breadth?
Problem 10 :
If the perimeter of a rectangle is 100 cm and its width is 32 m, then find the length of the rectangle.
1. Solution :
(a) Length of paddock = 800 m and width = 1.5 km
1000 m = 1 km
1.5 km = 1.5(1000)
= 1500 m
Area of paddock = length x width
= 800(1500)
= 1200000 m2
10000 m2 = 1 hectare
= 120 hectare
(b) Cost of fertilizer = $50 per hectare
Required cost = 120(50)
= 6000
So, the required cost to fertilize the paddock is $6000.
2. Solution :
Length of corn field = 2 km and width = 3.2 km
(a) Area of the property = length x width
= 2 x 3.2
= 6.4 km2
1 km2 = 100 hectare
= 6.4 (100)
= 640 hectare
(b) Cost of sowing crop = $80 per hectare
= 80(640)
= $51200
3. Solution :
(a) Length of pitch = 50 m and width = 90 m
Area of pitch = 50(90)
= 4500 m2
(b) Number of square meters he can mow in one minute
= 60 m2
Time taken to mow 4500 m2 = 4500/60
= 75 minutes
75 = 1 hour + 15 minutes
So, time taken is 1 hour and 15 minutes.
4. Solution :
Length of 1 tile = 20 cm and width = 30 cm
Area of one square tile = 30(20)
= 600 cm2
(a) Area of floor = 5(6)
length = 500 cm and width = 600 cm
= 300000 cm2
Number of tiles required to cover the floor
= 300000/600
= 500
So, the number of tiles required is 500.
(b) Cost of one tile = $6.85
Required cost = 500(6.85)
= $3425
So, total cost of tiles is $3425.
5. Solution :
Length of drive way = 23 m and width = 3 m
Area of driveway = 23(3)
= 69 m2
Materials cost = $20 per m2
Labor cost for concreting = $25 per m2
Material cost for drive way = 69(20)
= $1380
Labor cost for drive way = 69(25)
= $1725
Total cost = 1380 + 1725
= $3105
6. Solution :
Length = 50 m and width = 32 m
Area of gymnasium floor = 50(32)
= 1600 m2
Compound costing per square meter = $35.60
Required cost = 1600(35.60)
= $56960
7. Solution :
Length of the field = 300 m
width = 70 m
Area of the field = length x width
= 300 x 70
= 2100 square meter
So, the required area of the field is 2100 square meter.
8. Solution :
Length of paper = 18 cm
width of paper = 6 cm
area of paper = 18 x 6
= 108 square cm.
Area of paper is 108 square cm.
9. Solution :
Let x be the breadth of the rectangle, then length be 2x.
Area of the rectangle = 20 sq.m
length x width = 20 sq.m
x(2x) = 20
2x2 = 20
x2 = 10
x = √10
So, the breadth of the rectangle is √10 cm
10. Solution :
Perimeter of rectangle = 100 cm
Width = 32 m
2(length + width) = 100
2(length + 32) = 100
length + 32 = 100/2
length + 32 = 50
length = 50 - 32
= 18 m
So, the required length of the rectangle is 18 m.
Kindly mail your feedback to v4formath@gmail.com
We always appreciate your feedback.
©All rights reserved. onlinemath4all.com
Jan 22, 25 02:43 AM
Jan 20, 25 09:31 PM
Jan 20, 25 09:27 PM