Assume that lines which appear to be diameters are actual diameters.
Problem 1 :
In the diagram shown above, find m∠AOC.
Problem 2 :
In the diagram shown above, find the following arc measures.
(i) m∠arc BC
(ii) m∠arc ABC
Problem 3 :
In the diagram shown above, find the following measures.
(i) m∠arc CD
(ii) m∠AOC
(iii) m∠arc BD
(iv) m∠arc ABC
(v) m∠arc CBD
Problem 4 :
In the diagram shown above, find the m∠arc QTR.
Problem 5 :
In the diagram shown above, find the following measures.
m∠BOD, m∠BOE and m∠BOC
Problem 6 :
In the diagram shown above, find the following measures.
m∠KOL and m∠arc MNK
Problem 7 :
Find the value of x in the diagram shown below.
Problem 8 :
Find the value of x in the diagram shown below.
Problem 9 :
Find the value of x in the diagram shown below.
Problem 10 :
Find the value of x in the diagram shown below.
1. Answer :
In the circle above,
m∠arc AB + m∠arc BC + m∠arc CA = 360°
155° + 120° + m∠arc CA = 360°
275° + m∠arc CA = 360°
m∠arc CA = 85°
m∠AOC = 85°
2. Answer :
(i) m∠arc BC :
AB is the diameter of the above circle.
m∠arc AB = 180°
m∠arc BC + m∠arc CA = 180°
m∠arc BC + 123° = 180°
m∠arc BC = 57°
(ii) m∠arc ABC :
m∠arc ABC = m∠arc AB + m∠arc BC
= 180° + 57°
= 237°
3. Answer :
(i) m∠arc CD :
m∠AOB and m∠COD are vertical angles.
m∠COD = m∠AOB
m∠arc CD = m∠arc AB
m∠arc CD = 55°
(ii) m∠AOC :
BC is the diameter of the above circle.
m∠arc BAC = 180°
m∠arc BA + m∠arc AC = 180°.
55° + m∠arc AC = 180°.
m∠arc AC = 125°.
m∠AOC = 125°.
(iii) m∠arc BD :
m∠BOD and m∠AOC are vertical angles.
m∠BOD = m∠AOC
m∠BOD = 125°
m∠arc BD = 125°
(iv) m∠arc ABC :
m∠arc ABC = m∠arc ABD + m∠arc DC
= 180° + 55°
= 235°
(v) m∠arc CBD :
m∠arc CBD = m∠arc CAB + m∠arc BD
= 180° + 125°
= 305°
4. Answer :
Find m∠arc QP :
PS is the diameter of the above circle.
m∠arc PTS = 180°
m∠arc PT + m∠arc TS = 180°
135° + m∠arc TS = 180°
m∠arc TS = 45°
Find m∠arc QTR :
m∠QTR = m∠arc QT + m∠arc TS + m∠arc SR
= 180° + 45° + 81°
= 306°
5. Answer :
Find m∠BOD :
In the circle above,
m∠arc AB + m∠arc BCD + m∠arc DE + m∠arc EA = 360°
60° + m∠arc BCD + 86° + 154° = 360°
m∠arc BCD + 300° = 360°
m∠arc BCD = 60°
m∠BOD = 60°
Find m∠BOE :
m∠BOE = m∠arc BCD + m∠arc DE
= 60° + 86°
= 146°
Find m∠BOC :
In the above diagram, m∠BOC = m∠COD.
m∠BOC + m∠COD = m∠BOD
m∠BOC + m∠BOC = m∠BOD
2m∠BOC = 60°
m∠BOC = 30°
6. Answer :
In the diagram above, m∠JON and ∠KOM are vertical angles.
m∠KOM = m∠KOM
m∠KOM = 126°
m∠KOL + m∠LOM = 126°
In the above diagram, m∠KOL = m∠LOM.
m∠KOL + m∠KOL = 126°
2m∠KOL = 126°
m∠KOL = 63°
Find m∠arc MNK :
m∠arc MNK = 360° - m∠arc KLM
m∠arc MNK = 360° - m∠KOM
m∠arc MNK = 360° - 126°
m∠arc MNK = 234°
7. Answer :
In the circle above, PR is the diameter.
m∠arc PQR = 180°
m∠POQ + m∠QOR = 180°
m∠POQ + 140° = 180°
m∠POQ = 40°
In the diagram above, m∠SOR and m∠POQ are vertical angles.
m∠SOR = m∠POQ
6x - 8 = 40
6x = 48
x = 8
8. Answer :
In the circle above, AB is the diameter.
m∠AOC + m∠COB = 180°
In the diagram above, m∠AOC = m∠COB.
m∠COB + m∠COB = 180°
2m∠COB = 180°
m∠COB = 90°
x + 93 = 90
x = -3
9. Answer :
In the diagram above, m∠POT and m∠QOS are vertical angles.
m∠POT = m∠QOS
m∠POT = m∠QOR + m∠ROS
In the diagram above, m∠QOR = m∠ROS.
m∠POT = m∠QOR + m∠QOR
m∠POT = 2m∠QOR
12x - 2 = 2(5x + 10)
12x - 2 = 10x + 20
2x = 22
x = 11
10. Answer :
In the circle above,
m∠arc LM + m∠arc MN + m∠arc NL = 360°
In the diagram above, m∠arc MN = m∠arc NL.
m∠arc LM + m∠arc MN + m∠arc MN = 360°
m∠arc LM + 2m∠arc MN = 360°
-37x + 2 + 2(-27x - 3) = 360
-37x + 2 - 54x - 6 = 360
-91x - 4 = 360
-91x = 364
x = -4
Kindly mail your feedback to v4formath@gmail.com
We always appreciate your feedback.
©All rights reserved. onlinemath4all.com
Jan 22, 25 02:43 AM
Jan 20, 25 09:31 PM
Jan 20, 25 09:27 PM