COMPLEX NUMBERS OPERATIONS WORKSHEET

Problem 1 :

Solve the following quadratic equation using square root :

x2  =  36

Problem 2 :

Solve the following quadratic equation using square root :

x2  =  -25

Problem 3 :

Find the sum of the following two complex numbers. 

(3 - 4i) and (-8 + 6i)

Problem 4 :

Find the difference of the following two complex numbers. 

(5 + 9i) and (3 - 4i)

Problem 5 : 

Find the product in the form a + bi : 

-3.5i(7 - 8i)

Problem 6 :

Find the product in the form a + bi : 

(5 + 3i)(5 - 3i)

Problem 7 :

Write the following complex number in a + bi form :

5 / (2 - i)

Problem 8 :

Factor p2 + q2.

Problem 9 :

Factor 16p2 + 4.

Problem 10 :

Solve the following quadratic equation using factoring : 

x2 + 16  =  0

Answers

Problem 1 :

Solve the following quadratic equation using square root :

x2  =  36

Solution : 

In the given quadratic equation, x term is missing. So we can solve the equation using square root. 

x2  =  36

Take square root on each side. 

x  =  ±√36

x  =  ± 6

The solutions of the equation x2  =  36 are -6 and 6.

Problem 2 :

Solve the following quadratic equation using square root :

x2  =  -25

Solution : 

In the given quadratic equation, x term is missing. So we can solve the equation using square root. 

x2  =  -25

Take square root on each side. 

x  =  ± √-25

x  =  ± √25-1

x  =  ± 5i

The solutions of the equation x2 = -25 are not real numbers but are part of a number system called the complex numbers. The number -1 is called the imaginary unit i. Replacing -1 with i allows us to write the solutions to the equation x2  =  -25 as 5i and -5i. 

Problem 3 :

Find the sum of the following two complex numbers. 

(3 - 4i) and (-8 + 6i)

Solution :

When adding two complex numbers in the form a + bi, combine the real parts and then combine the imaginary parts. The sum will include both a real and imaginary part and can be written in the form a + bi.   

(3 - 4i) + (-8 + 6i)  =  [3 + (-8)] + [-4i + 6i]

=  [3 - 8] + [2i]

=  - 5 + 2i

Problem 4 :

Find the difference of the following two complex numbers. 

(5 + 9i) and (3 - 4i)

Solution :

When subtracting two complex numbers in the form a + bi, combine the real parts and then combine the imaginary parts. The difference will include both a real and imaginary part and can be written in the form a + bi.   

(5 + 9i) - (3 - 4i)  =  [5 - 3] + [9i - (-4i)]

=   [2] + [9i + 4i]

=   2 + 13i

Problem 5 : 

Find the product in the form a + bi : 

-3.5i(7 - 8i)

Solution : 

Use the distributive property.

-3.5i(7 - 8i)  =  -3.5i(7) - 3.5i(-8i)

Multiply.

=  -24.5i + 28i2

Simplify using the definition i2.

=  -24.5i + 28(-1)

=  -24.5i - 28

Write in the form a + bi.

=  -28 - 24.5i

Problem 6 :

Find the product in the form a + bi : 

(5 + 3i)(5 - 3i)

Solution : 

Use the distributive property.

(5 + 3i)(5 - 3i)  =  5(5 - 3i) + 3i(5 - 3i)

Multiply.

=  25 - 15i + 15i - 9i2

=  25 - 9i2

Simplify using the definition i2.

=  25 - 9(-1)

=  25 + 9

=  34

Problem 7 :

Write the following complex number in a + bi form :

5 / (2 - i)

Solution : 

When the denominator has an imaginary component, we can create an equivalent fraction with a real denominator by multiplying by its complex conjugate.  

Use the complex conjugate of the denominator to multiply by 1. 

    5 / (2 - i)  =  [5 / (2 - i)]  x  1

=  [5 / (2 - i)]  x  [(2 + i) / (2 + i)]

=  [5(2 + i)]  /  [(2 - i)(2 + i)]

Use the distributive property. 

=  (10 + 5i)  /  (4 + 2i - 2i - i2)

=  (10 + 5i)  /  (4 - i2)

Simplify using the definition i2.

=  (10 + 5i)  /  [4 - (-1)]

=  (10 + 5i)  /  (4 + 1)

=  (10 + 5i)  /  5

=  10 / 5  +  5i /5

=  2 + i

Problem 8 :

Factor p2 + q2.

Solution : 

Rewrite p2 + qas a difference of two squares :

p2 - (-q2)

We can think of (-q2) as 

(-1)(q2)

Because -1  =  i2, we have

(-q2)  =  (-1)(q2)  =  (i2)(q2)  =  (iq)2

So, we have

p2 + q2  =  p2 - (-q2)

=  p2 - (iq)2

=  (p + iq)(p - iq)

Problem 9 :

Factor 16p2 + 4.

Solution : 

Factor out the GCF :

16p2 + 4  =  4(4p2 + 1)

Rewrite as a difference of squares.  

=  4(4p2 - i2)

Factor the difference of squares.

=  4(4p2 - i2)

=  4(4p + i)(4p - i)

The factors of 16p2 + 4 are 4, (4p + i) and (4p - i).

Problem 10 :

Solve the following quadratic equation using factoring : 

x2 + 16  =  0

Solution : 

Write the original equation :

x2 + 16  =  0

x2 + 42  =  0

Rewrite as a difference of squares. 

x2 - (4i)2  =  0

(x + 4i)(x - 4i)  =  0

By Zero Product Property, 

x + 4i  =  0,    x - 4i  =  0

x  =  -4i,    x  =  4i

The solutions are -4i and 4i.

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. Exponents Rules

    Nov 14, 24 05:02 AM

    Exponents Rules

    Read More

  2. Best Way to Learn Mathematics

    Nov 13, 24 07:54 PM

    Best Way to Learn Mathematics

    Read More

  3. SAT Math Videos (Part - 1)

    Nov 13, 24 07:51 PM

    sattriangle1.png
    SAT Math Videos (Part - 1)

    Read More