DERIVATIVES OF INVERSE FUNCTIONS

Conider a function f(x). Let g(x) be the inverse function of f(x). That is,

g(x) = f-1(x)

Take the function f on both sides using the operation function composition.

f  g(x)] = f ∘ f-1(x)

f[g(x)] = f[f-1(x)]

f[g(x)] = f1-1(x)

f[g(x)] = f0(x)

f[g(x)] = x

Find the derivative on both sides with respect to x. (Use chain rule on the left side. That is, first find the derivative of f, then by chain rule, find the derivative of g(x)).

f'[g(x)] ⋅ g'(x) = 1

Divide both sides by f'[g(x)].

Replace g(x) by f-1(x).

Example 1 :

Let g(x) be the inverse of f(x). If f(x) = 2x + 1, find g'(2).

Solution :

Since g(x) is the inverse of f(x),

g(x) = f-1(x)

Formula to find the derivative of g(x).

Substitute x = 2.

Let g(2) = k.

Since g(x) is the inverse of f(x),

derivativeofinversefunction1

Therefore,

f(k) = 2

2k + 1 = 2

Subtract 1 from both sides.

2k = 1

Divide both sides by 2.

k = ½

Since g(2) = k,

g(2) = ½

f(x) = 2x + 1

f'(x) = 2(1) + 0

f'(x) = 2

Substitute x = ½.

f'(½) = 2

Therefore,

g'(2) = ½

Example 2 :

Given : f(x) = x3 + x + 5. If g(x) is the inverse of f(x), find g'(5).

Solution :

Since g(x) is the inverse of f(x),

g(x) = f-1(x)

Formula to find the derivative of g(x).

Substitute x = 5.

Let g(5) = k.

Since g(x) is the inverse of f(x),

f(k) = 5

k3 + k + 5 = 5

Subtract 5 from both sides.

k3 + k = 0

k(k2 + 1) = 0

k = 0

k2 + 1 = 0

√k2 = -1

k = -1

(imaginary)

Therefore,

k = 0

Since g(5) =k,

g(5) = 0

f(x) = x3 + x + 5

f'(x) = 3x2 + 1

Substitute x = 0.

f'(0) = 3(0)2 + 1

f'(0) = 0 + 1

f'(0) = 1

Therefore,

g'(5) = ¹⁄₁

g'(5) = 1

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. AP Calculus AB Problems with Solutions (Part - 6)

    Jan 15, 25 07:19 PM

    AP Calculus AB Problems with Solutions (Part - 6)

    Read More

  2. Digital SAT Math Problems and Solutions (Part - 100)

    Jan 14, 25 12:34 AM

    Digital SAT Math Problems and Solutions (Part - 100)

    Read More

  3. SAT Math Resources (Videos, Concepts, Worksheets and More)

    Jan 14, 25 12:23 AM

    SAT Math Resources (Videos, Concepts, Worksheets and More)

    Read More