sin 2A = 2 sin A cos A
cos 2A = cos² A - sin² A
tan 2A = 2tan A/(1-tan² A)
cos 2A = 1 - 2sin² A
cos 2A = 2cos² A - 1
sin 2A = 2 tan A/(1+tan² A)
cos 2A = (1-tan² A)/(1+tan² A)
sin²A = (1-cos2A)/2
cos²A = (1+cos2A)/2
tan²A = (1-cos2A)/(1+cos2A)
sin 3A = 3 sin A - 4 sin³A
cos 3A = 4 cos³A - 3 cos A
tan 3A = (3 tan A - tan³ A)/(1-3tan²A)
sin A = 2 Sin (A/2) cos (A/2)
cos A = cos² (A/2) - Sin² (A/2)
tan A = 2 tan (A/2)/[1-tan² (A/2)]
cos A = 1 - 2sin² (A/2)
cos A = 2cos² (A/2) - 1
sin A = 2 tan (A/2)/[1 + tan² (A/2)]
cos A = [1 - tan²(A/2)]/[1 + tan² (A/2)]
sin²A/2 = (1 - cos A)/2
cos²A/2 = (1 + cos A)/2
tan²(A/2) = (1 - cos A)/(1 + cos A)
Let us look at some examples to understand how to differentiate a function using trigonometric substitution.
Example 1 :
Differentiate the following
tan-1[√(1 - cos x)/(1+cosx)]
Solution :
Let y = tan-1[√(1 - cos x)/(1+cosx)]
Trigonometric formula for (1-cos x)/(1+cosx) = tan2(x/2)
By applying trigonometric formula, we may find derivatives easily.
y = tan-1[√tan2(x/2)]
y = x/2
Differentiating with respect to "x"
dy/dx = 1/2
Example 2 :
Differentiate the following
tan-1[6x/1-9x2]
Solution :
Let y = tan-1[6x/1-9x2]
y = tan-1[2(3x) /1-(3x)2]
Let 3x = tan θ
y = tan-1[2 tan θ /1-tan2θ]
2 tan θ /1-tan2θ = tan 2θ
y = tan-1[tan 2θ]
y = 2θ
dy/dx = 2 (dθ/dx) ------(1)
3x = tan θ
3(1) = sec2θ(dθ/dx)
3/sec2θ = (dθ/dx)
Applying dθ/dx = 3/sec2θ in (1)
dy/dx = 2 (3/sec2θ)
= 2(3)/(1 + tan2θ)
= 6/(1 + (3x)2)
= 6/(1 + 9x2)
Example 3 :
Differentiate the following
cos (2tan-1[√(1-x)/(1+x)])
Solution :
Let y = cos (2tan-1[√(1-x)/(1+x)])
let x = cos θ
Differentiating with respect to x, we get
dx/dθ = -sin θ
y = cos (2tan-1[√(1-cosθ)/(1+cosθ)])
y = cos (2tan-1[√tan2(θ/2])
y = cos (2tan-1[tan(θ/2])
y = cos θ
Differentiating with respect to θ.
dy/dx = -sin θ (dθ/dx) -----(1)
Now let us apply the value of dx/dθ = -sin θ in (1)
dy/dx = -sin θ (-1/sinθ)
dy/dx = 1
Kindly mail your feedback to v4formath@gmail.com
We always appreciate your feedback.
©All rights reserved. onlinemath4all.com
Dec 23, 24 03:47 AM
Dec 23, 24 03:40 AM
Dec 21, 24 02:19 AM