EXAMPLES OF FINDING THE POINT OF INTERSECTION OF TWO LINES

If two straight lines are not parallel then they will meet at a point.This common point for both straight lines is called the point of intersection.

If the equations of two intersecting straight lines are given,then their intersecting point is obtained by solving equations simultaneously.

Example 1 :

Find the intersection point of the straight lines

4x - 3y  =  3 and 3x + 2y  =  15

Solution :

4x - 3y  =  3   ----- (1)

3x + 2y  =  15 ------(2) 

(1)  2 =>  8x - 6y  =  6

(2)  3 => 9 x + 6 y  =  45

                          8 x - 6 y  =  6

                          9 x + 6 y  =  45

                       --------------------

                          17x  =  51 

                          x  =  51/17

                          x  =  3

By applying x = 3 in (1), we get

8(3) - 6y  =  6

24 - 6y  =  6

-6y  =  6 - 24

-6 y  =  -18

y  =  3

So the point of intersection of the straight lines is (3, 3).

Example 2 :

Find the intersection point of the straight lines

3x + 2y  =  11 and 7x - 3y  =  41

Solution :

3x + 2y  =  11 ----- (1)

7x - 3y  =  41  ------(2) 

(1)  3 =>  9x + 6y  =  33

(2)  2 =>  14 x - 6 y  =  82

9x + 6y  =  33

14x - 6y  =  82

--------------------

23x  =  115 

x  =  115/23

x  =  5

By applying x = 5 in (1), we get

3(5) + 2y  =  11

15 + 2y  =  11

y  =  11 - 15

2y  =  -4

y  =  -2

So the point of intersection of the given straight lines is (5, -2).

Example 3 :

Find the intersection point of the straight lines

5x + 3y  =  11 and 3x + 5y  =  -3

Solution :

5x + 3y  =  11  ----- (1)

3x + 5y  =  -3 ------(2) 

(1)  5 => 25 x + 15 y = 55

(2)  3 => 9 x + 15 y = -9

25 x + 15 y = 55

9 x + 15 y = -9

(-)     (-)    (+)

--------------------

16x  =  64 

x  =  4

By applying x = 4 in (1), we get

5(4) + 3y  =  11

20 + 3y  =  11

3y  =  11 - 20

3y  =  -9

y = -3

So the intersection point of the straight lines is (4,-3).

Example 4 :

Find the intersection point of the straight lines

2x - y  =  15 and 5x + 3y  =  21

Solution :

2x - y  =  15   ----- (1)

5x + 3y  =  21 ------(2) 

(1)  3 => 6x - 3y  =  45

6x - 3y  =  45

5x + 3y  =  21

--------------------

11x  =  66 

x  =  6

By applying x = 6 in (1), we get

2(6) - y  =  15

12 -  y  =  15

y  =  -3

So the point of intersection of the given straight lines is (6, -3).

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. AP Calculus AB Problems with Solutions

    Dec 26, 24 07:41 AM

    apcalculusab1.png
    AP Calculus AB Problems with Solutions

    Read More

  2. SAT Math Resources (Videos, Concepts, Worksheets and More)

    Dec 23, 24 03:47 AM

    SAT Math Resources (Videos, Concepts, Worksheets and More)

    Read More

  3. Digital SAT Math Problems and Solutions (Part - 91)

    Dec 23, 24 03:40 AM

    Digital SAT Math Problems and Solutions (Part - 91)

    Read More