EXPONENTS AND SQUARE ROOTS

Exponent :

The exponent of a number says how many the number has to be multiplied by itself.

In 92 the '2' says that 9 has to be used twice twice in multiplication, so 92 = 9 × 9 = 81.

In words : 92 can be called '9 to the power 2' or '9' to the second power, or simply '9 squared' Exponents are also called Powers or Indices.

Square Root :

Square root of a number is a value that can be multiplied by itself to give the original number. 

The symbol of the square root is

Square root of 9 is 3. 

Because when 3 is multiplied by itself, we get 9.

Exponent Rules

Rule 1 : 

xm ⋅ xn  =  xm+n

Rule 2 : 

xm ÷ xn  =  xm-n

Rule 3 : 

(xm)n  =  xmn

Rule 4 : 

(xy)m  =  xm ⋅ ym

Rule 5 : 

(x / y)m  =  xm / ym

Rule 6 : 

x-m  =  1 / xm

Rule 7 : 

x0  =  1

Rule 8 : 

x1  =  x

Rule 9 : 

xm/n  =  y -----> x  =  yn/m

Rule 10 : 

(x / y)-m  =  (y / x)m

Rule 11 : 

ax  =  ay -----> x  =  y

Rule 12 : 

xa  =  ya -----> x  =  y

Square Root Rules

Rule 1 : 

√a ⋅ √b  =  √(ab)

Rule 2 : 

√a / √b  =  √(a/b)

Rule 3 : 

√a⋅ √a  =  a

Rule 4 : 

√a  =  k ----->  a1/2  =  k

Rule 5 : 

√a  =  b -----> a  =  b2

Practice Problems

Problem 1 : 

Simplify : 

(a7 ⋅ a⋅ a-4) / (a⋅ a-3 ⋅ a4)

Solution : 

(a7 ⋅ a⋅ a-4/ (a⋅ a-3 ⋅ a4)  =  a7+2-4 / a2-3+4

(a7 ⋅ a⋅ a-4) / (a⋅ a-3 ⋅ a4)  =  a5 / a3

(a7 ⋅ a⋅ a-4) / (a⋅ a-3 ⋅ a4)  =  a5-3

(a7 ⋅ a⋅ a-4) / (a⋅ a-3 ⋅ a4)  =  a2

Problem 2 : 

Simplify : 

(a6 ⋅ b3) / (a⋅ b-3)2

Solution :

(a6 ⋅ b3) / (a⋅ b-3) =  (a6 ⋅ b3) / [(a2)⋅ (b-3)2]

(a6 ⋅ b3) / (a⋅ b-3) =  (a6 ⋅ b3) / (a4 ⋅ b-6)

(a6 ⋅ b3) / (a⋅ b-3) =  a6-4 ⋅ b3+6

(a6 ⋅ b3) / (a⋅ b-3) =  a2b9

Problem 3 : 

If 82n + 3  =  4n + 5, then find the value of n. 

Solution : 

82n + 3  =  4n + 5

(23)2n + 3  =  (22)n + 5

23(2n + 3)  =  22(n + 5)

Equate the exponents.   

3(2n + 3)  =  2(n + 5)

6n + 9  =  2n + 10

4n  =  1

n  =  1/4

Problem 4 :

Simplify the following square root expression :

√40 + √160

Solution : 

Decompose 40 and 160 into prime factors using synthetic division. 

√40  =  √(2 ⋅ 2 ⋅ 2 ⋅ 5)  =  2√10

√160  =  √(2 ⋅ 2 ⋅ 2 ⋅ 2 ⋅ 2 ⋅ 5)  =  4√10

So, we have

√40 + √160  =  2√10 + 4√10

√40 + √160  =  6√10

Problem 5 : 

Simplify the following square root expression :

(14√117) ÷ (7√52)

Solution : 

Decompose 117 and 52 into prime factors using synthetic division.

√117  =  √(3 ⋅ 3 ⋅ 13)

√117  =  3√13

√52  =  √(2 ⋅ 2 ⋅ 13)

√52  =  2√13

(14√117) ÷ (7√52)  =  14(3√13) ÷ 7(2√13)

(14√117) ÷ (7√52)  =  42√13 ÷ 14√13

(14√117) ÷ (7√52)  =  42√13 / 14√13

(14√117) ÷ (7√52)  =  3

Problem 6 :

Simplify the following square root expression :

(√3)3 + √27  

Solution :

(√3)3 + √27  =  (√3 ⋅ √3  √3) + √(3 ⋅ 3 ⋅ 3)

(√3)3 + √27  =  (3  √3) + 3√3

(√3)3 + √27  =  3√3 + 3√3

(√3)3 + √27  =  6√3

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. Digital SAT Math Problems and Solutions (Part - 72)

    Nov 23, 24 09:36 PM

    digitalsatmath57.png
    Digital SAT Math Problems and Solutions (Part - 72)

    Read More

  2. SAT Math Resources (Videos, Concepts, Worksheets and More)

    Nov 23, 24 10:01 AM

    SAT Math Resources (Videos, Concepts, Worksheets and More)

    Read More

  3. Digital SAT Math Problems and Solutions (Part - 76)

    Nov 23, 24 09:45 AM

    digitalsatmath63.png
    Digital SAT Math Problems and Solutions (Part - 76)

    Read More