FIND THE AREA OF THE SHADED REGION

Find the area of shaded regions :

Example 1 :

Solution :

Area of shaded region 

=  Area of large rectangle – Area of small rectangle

Area of rectangle  =  Length  width

Large rectangle :

Length  =  12 cm  

width  =  9 cm

Area of large rectangle  =  (12 ⋅ 9)

=  108 cm2------(1)

Small rectangle :

Length  =  6 cm

width  =  3 cm

Area of small rectangle  =  (6 ⋅ 3)

=  18 cm2------(2)

(1) – (2)

=  (108 – 18) cm2

=  90 cm2

So, area of shaded region is 90 cm2

Example 2 :

Solution :

Area of shaded region 

=  Area of rectangle – 2(Area of triangle)

Area of rectangle  =  length ⋅ width

Area of triangle  =  (1/2)  base  height

Area of rectangle  :

Area of rectangle  =  (9  5)

=  45 m2------(1)

 2(Area of triangle) :

base  =  4 m

height  =  3 m

2(Area of triangle)  =  2(1/2) ⋅ 4 ⋅ 3

=  2(6)

=  12 m2------(2)

(1) – (2)

Area of shaded region  =  (45 – 12) m2

=  33 m2 

So, area of shaded region is 33 m2

Example 3 :

Solution :

Area of shaded region 

=  Area of rectangle + Area of square

Area of rectangle :

Length  =  (4 + 3) km  ==>  7 km

Width  =  3 km

Area of rectangle  =  (7  3)

=  21 km2-----(1)

Area of square :

side  =  3 km

Area of square  =  (side)2  =  (3)2

=  9 km2-----(2)

(1) + (2)

=  (21 + 9) km2

Area of shaded region  =  30 km2

So, area of shaded region is 30 km2

Example 4 :

Solution :

Area of shaded region

=  Area of triangle + Area of rectangle

Area of triangle :

Area of triangle  =  (1/2)  base  height

base  =  6 cm and height  =  2 cm

Area of triangle  =  (1/2  6  2)

=  6 cm2-----(1)

Area of rectangle :

Area of rectangle  =  Length . width

Length  =  6 cm and Width  =  3 cm

Area of rectangle  =  (6  3)

=  18 cm2-----(2)

(1) + (2)

Area of shaded region  =  (6 + 18) cm2

=  24 cm2

So, area of shaded region is 24 cm2

Example 5 :

Solution :

Area of shaded region

=  Area of large rectangle – Area of small rectangle

Area of rectangle  =  Length  width

Large rectangle :

Length  =  17 m and width  =  10 m

Area of large rectangle  =  (17  10)

=  170 m2------(1)

Small rectangle :

Length  =  (17–2)  ==>  15 m

width  =  (10–2) ==>  8 m

Area of small rectangle  =  (15  8)

=  120 m2------(2)

(1) – (2)

=  (170 – 120) m2

=  50 m2

So, area of shaded region is 50 m2

Example 6 :

Solution :

Area of shaded region

=  Area of rectangle – Area of parallelogram

Area of parallelogram  =  base ⋅ height

Area of rectangle :

Area of rectangle  =  Length  width

Length  =  13 cm and width  =  8 cm

Area of rectangle  =  (13  8)

=  104 cm2-----(1)

Area of parallelogram :

base  =  9 cm and height  =  7 cm

Area of parallelogram  =  (9  7)

=  63 cm2------(2)

(1) – (2)

=  (104 – 63) cm2

Area of shaded region  =  41 cm2

So, area of shaded region is 41 cm2

Example 7 :

Solution :

Area of shaded region

=  Area of large parallelogram – Area of small parallelogram

Large parallelogram :

base  =  10.2 m and height  =  7.8 m

Area of large parallelogram  =  (10.2 × 7.8)

=  79.56 m2------(1)

Small parallelogram :

base  =  7.2 m and height  =  4.8 m

Area of small parallelogram  =  (7.2 × 4.8)

=  34.56 m2------(2)

(1) – (2)

=  (79.56 – 34.56) m2

=  45 m2

So, area of shaded region is 45 m2

Example 8 :

A rectangular lawn 18 m by 30 m is surrounded by a concrete path 1 m wide. Draw a diagram of the situation and find the total area of concrete.

Solution :

Area of shaded region

=  Area of rectangular concrete path – Area of rectangular lawn

Area of rectangle  =  Length . width

Area of rectangular concrete path :

Length  =  (30+2) m  ==>  32 m

width  =  (18+2) m  ==>  20 m

Area of rectangular concrete path  =  (32 . 20)

=  640 m2------(1)

Area of rectangular lawn :

Length  =  30 m and width  =  18 m

Area of rectangular lawn  =  (30 . 18)

=  540 m2------(2)

(1) – (2)

=  (640 – 540) m2

=  100 m2

So, total area of concrete is 100 m2

Example 9 :

The shaded square is inscribed the larger square

area-of-shaded-figure-q1

Solution :

Since the given shape is a square and at each corner we see right triangles. Each right triangle should satisfy Pythagorean theorem also,

22 + 12 = (Side length of square)2

4 + 1 = (Side length of square)2

(Side length of square)2 = 5

Area of square = side length x side length

So, area of the shaded square is 5 square units.

Example 10 :

The figure consists of 2 concentric circles. If the shaded area is The shaded circle is 64 π and the smaller circle has the radius of 6 cm, what is the radius of the larger circle in inches ?

area-of-shaded-figure-q2.png

Solution :

Let R and r be the radius of larger circle and smaller circle respectively.

Area of shaded circle = Area of larger circle - area of smaller circle

πR2 - π r2

πR2 - π r2 = 64π

R2 - r2 = 64

Here r = 6

R2 - 62 = 64

R2 = 64 + 36

R2 = 100

R = 10

So, radius of larger circle is 10 cm.

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. SAT Math Resources (Videos, Concepts, Worksheets and More)

    Dec 23, 24 03:47 AM

    SAT Math Resources (Videos, Concepts, Worksheets and More)

    Read More

  2. Digital SAT Math Problems and Solutions (Part - 91)

    Dec 23, 24 03:40 AM

    Digital SAT Math Problems and Solutions (Part - 91)

    Read More

  3. Digital SAT Math Problems and Solutions (Part - 90)

    Dec 21, 24 02:19 AM

    Digital SAT Math Problems and Solutions (Part - 90)

    Read More