How to find the cube root of a complex number ?
Let z = r(cos θ + i sin θ) and n be a positive integer.
Then z has n distinct nth roots given by,
zk = n√r[cos ((θ + 2πk)/n) + i sin ((θ + 2πk)/n)]
(where k = 0, 1, 2, 3, … , n -1)
We are using the nth roots formula, to find the cube root of a complex number.
Find the cube root of the given complex number in polar form.
Example 1 :
2(cos 2π + i sin 2π)
Solution :
Given, z = 2(cos 2π + i sin 2π)
Using the nth roots formula :
zk = n√r[cos ((θ + 2πk)/n) + i sin ((θ + 2πk)/n)]
For k = 0, 1, and 2 we obtain the roots.
Here n = 3, r = 2, and θ = 2π
If k = 0
z0 = 3√2[cos ((2π + 2π(0)/3) + i sin ((2π + 2π(0)/3)]
z0 = 3√2[cos (2π/3) + i sin (2π/3)]
If k = 1
z1 = 3√2[cos ((2π + 2π(1)/3) + i sin ((2π + 2π(1)/3)]
z1 = 3√2[cos (8π/3) + i sin (8π/3)]
If k = 2
z2 = 3√2[cos ((2π + 2π(2))/3) + i sin ((2π + 2π(2))/3)]
z2 = 3√2[cos (10π/3) + i sin (10π/3)]
Example 2 :
2(cos π/4 + i sin π/4)
Solution :
Given, z = 2(cos π/4 + i sin π/4)
zk = n√r[cos ((θ + 2πk)/n) + i sin ((θ + 2πk)/n)]
Here n = 3, r = 2, and θ = π/4
If k = 0
z0 = 3√2[cos ((π/4 + 2π(0)/3) + i sin ((π/4 + 2π(0)/3)]
z0 = 3√2[cos (π/12) + i sin (π/12)]
If k = 1
z1 = 3√2[cos ((π/4 + 2π(1)/3) + i sin ((π/4 + 2π(1)/3)]
z1 = 3√2[cos (9π/12) + i sin (9π/12)]
If k = 2
z2 = 3√2[cos ((π/4 + 2π(2)/3) + i sin ((π/4 + 2π(2)/3)]
z2 = 3√2[cos (17π/12) + i sin (17π/12)]
Example 3 :
3(cos 4π/3 + i sin 4π/3)
Solution :
Given, z = 3(cos 4π/3 + i sin 4π/3)
Here n = 3, r = 3, and θ = 4π/3
If k = 0
z0 = 3√3[cos ((4π/3 + 2π(0)/3) + i sin ((4π/3 + 2π(0)/3)]
z0 = 3√3[cos (4π/9) + i sin (4π/9)]
If k = 1
z1 = 3√3[cos ((4π/3 + 2π(1)/3) + i sin ((4π/3 + 2π(1)/3)]
z1 = 3√3[cos (10π/9) + i sin (10π/9)]
If k = 2
z2 = 3√3[cos ((4π/3 + 2π(2)/3) + i sin ((4π/3 + 2π(2)/3)]
z2 = 3√2[cos (16π/9) + i sin (16π/9)]
Example 4 :
27(cos 11π/6 + i sin 11π/6)
Solution :
Given, z = 27(cos 11π/6 + i sin 11π/6)
Here n = 3, r = 27, and θ = 11π/6
If k = 0
z0 = 3√27[cos ((11π/6 + 2π(0)/3) + i sin ((11π/6 + 2π(0)/3)]
z0 = 3[cos (11π/18) + i sin (11π/18)]
If k = 1
z1 = 3√27[cos ((11π/6 + 2π(1))/3) + i sin ((11π/6 + 2π(1))/3)]
z1 = 3[cos (23π/18) + i sin (23π/18)]
If k = 2
z2 = 3√27[cos ((11π/6 + 2π(2)/3) + i sin ((11π/6 + 2π(2)/3)]
z2 = 3[cos (35π/18) + i sin (35π/18)]
Example 5 :
-2 + 2i
Solution :
Given, standard form of z = -2 + 2i
The polar form of the complex number z is
-2 + 2i = r(cos θ + i sin θ) ---(1)
Finding r : r = √[(2)2 + (2)2] r = √8 |
Finding the α : α = tan-1(2/2) α = π/4 |
Since the complex number -2 + 2i is negative and positive, z lies in the second quadrant.
So, the principal value θ = π - π/4
θ = 3π/4
By applying the value of r and θ in equation (1), we get
-2 + 2i = √8(cos 3π/4 + i sin 3π/4)
So, the polar form is
√8(cos 3π/4 + i sin 3π/4)
zk = n√r[cos ((θ + 2πk)/n) + i sin ((θ + 2πk)/n)]
For k = 0, 1, and 2 we obtain the roots.
Here n = 3, r = √8, and θ = 3π/4
If k = 0
z0 = 3√(√8)[cos (3π/4 + 2π(0)/3) + i sin (3π/4 + 2π(0)/3)]
By m√(n√a) = mn√a, we get
z0 = 6√8[cos 3π/12 + i sin 3π/12]
If k = 1
z1 = 3√(√8)[cos (3π/4 + 2π(1)/3) + i sin (3π/4 + 2π(1)/3)]
z1 = 6√8[cos 11π/12 + i sin 11π/12]
If k = 2
z2 = 3√(√8)[cos (3π/4 + 2π(2)/3) + i sin (3π/4 + 2π(2)/3)]
z2 = 6√8[cos 19π/12 + i sin 19π/12]
Example 6 :
Determine the fourth roots of –8 + 8√3 i . Give answers in rectangular form.
Solution :
Given, standard form of z = –8 + 8√3 i
The polar form of the complex number z is
–8 + 8√3 i = r(cos θ + i sin θ) ---(1)
Finding r : r = √[(-8)2 + (8√3)2] r = √64 + 64(3) = √64 + 192 = √256 = 16 |
Finding the α : α = tan-1(8√3/8) α = tan-1(-√3) α = π/3 |
Since the complex number –8 + 8√3i is negative and positive, z lies in the second quadrant.
So, the principal value θ = π - π/3
= 2π/3
By applying the value of r and θ in equation (1), we get
–8 + 8√3 i = 16(cos 2π/3 + i sin 2π/3)
So, the polar form is
16(cos 2π/3 + i sin 2π/3)
zk = n√r[cos ((θ + 2πk)/n) + i sin ((θ + 2πk)/n)]
zk = 4√r[cos ((θ + 2πk)/4) + i sin ((θ + 2πk)/4)]
= 2[cos ((2π + 6πk)/4) + i sin ((2π + 6πk)/4)]
= 2[cos (2 + 6k)(π/12) + i sin (2 + 6k)(π/12)]
For k = 0, 1, 2 and 3 we obtain the roots.
Here n = 4, r = 16 and θ = π/3
If k = 0
= 2[cos (2π/12) + i sin (2π/12)]
= 2[cos (π/6) + i sin (π/6)]
= 2[√3/2 + i (1/2)]
= 2[(√3 + i)/2]
= (√3 + i)
If k = 1
= 2[cos (8π/12) + i sin (8π/12)]
= 2[cos (2π/3) + i sin (2π/3)]
= 2(-1 + i√3)/2
= (-1 + i√3)
If k = 2
= 2[cos (14π/12) + i sin (14π/12)]
= 2[cos (7π/6) + i sin (7π/6)]
= 2(-√3 - i)/2
= -√3 - i
If k = 3
= 2[cos (20π/12) + i sin (20π/12)]
= 2[cos (5π/4) + i sin (5π/4)]
= 2(1 - i√3)/2
= 1 - i√3
Kindly mail your feedback to v4formath@gmail.com
We always appreciate your feedback.
©All rights reserved. onlinemath4all.com
Apr 18, 25 06:52 AM
Apr 16, 25 09:25 PM
Apr 16, 25 12:35 PM