FIND THE CUBE ROOT OF A COMPLEX NUMBER

How to find the cube root of a complex number ?

Let z  =  r(cos θ + i sin θ) and n be a positive integer.

Then z has n distinct nth roots given by,

zk  =  n√r[cos ((θ + 2πk)/n) + i sin ((θ + 2πk)/n)]

(where k  =  0, 1, 2, 3, … , n -1)

We are using the nth roots formula, to find the cube root of a complex number. 

Find the cube root of the given complex number in polar form.

Example 1 :

2(cos 2π + i sin 2π)

Solution :

Given, z  =  2(cos 2π + i sin 2π)

Using the nth roots formula :

z=  n√r[cos ((θ + 2πk)/n) + i sin ((θ + 2πk)/n)]

For k  =  0, 1, and 2 we obtain the roots.

Here n  =  3, r  =  2, and θ  =  2π

If k  =  0

z0  3√2[cos ((2π + 2π(0)/3) + i sin ((2π + 2π(0)/3)]

z0  =  3√2[cos (2π/3) + i sin (2π/3)]

If k  =  1

z1  =  3√2[cos ((2π + 2π(1)/3) + i sin ((2π + 2π(1)/3)]

z1  =  3√2[cos (8π/3) + i sin (8π/3)]

If k  =  2

z2  =  3√2[cos ((2π + 2π(2))/3) + i sin ((2π + 2π(2))/3)]

z2  =  3√2[cos (10π/3) + i sin (10π/3)]

Example 2 :

2(cos π/4 + i sin π/4)

Solution :

Given, z  =  2(cos π/4 + i sin π/4)

zk  =  n√r[cos ((θ + 2πk)/n) + i sin ((θ + 2πk)/n)]

Here n  =  3, r  =  2, and θ  =  π/4

If k  =  0

z0  =  3√2[cos ((π/4 + 2π(0)/3) + i sin ((π/4 + 2π(0)/3)]

z0  =  3√2[cos (π/12) + i sin (π/12)]

If k  =  1

z1  =  3√2[cos ((π/4 + 2π(1)/3) + i sin ((π/4 + 2π(1)/3)]

z1  =  3√2[cos (9π/12) + i sin (9π/12)]

If k  =  2

z2  =  3√2[cos ((π/4 + 2π(2)/3) + i sin ((π/4 + 2π(2)/3)]

z2  =  3√2[cos (17π/12) + i sin (17π/12)]

Example 3 :

3(cos 4π/3 + i sin 4π/3)

Solution :

Given, z  =  3(cos 4π/3 + i sin 4π/3)

Here n  =  3, r  =  3, and θ  =  4π/3

If k  =  0

z0  =  3√3[cos ((4π/3 + 2π(0)/3) + i sin ((4π/3 + 2π(0)/3)]

z0  =  3√3[cos (4π/9) + i sin (4π/9)]

If k  =  1

z1  =  3√3[cos ((4π/3 + 2π(1)/3) + i sin ((4π/3 + 2π(1)/3)]

z1  =  3√3[cos (10π/9) + i sin (10π/9)]

If k  =  2

z2  =  3√3[cos ((4π/3 + 2π(2)/3) + i sin ((4π/3 + 2π(2)/3)]

z2  =  3√2[cos (16π/9) + i sin (16π/9)]

Example 4 :

27(cos 11π/6 + i sin 11π/6)

Solution :

Given, z  =  27(cos 11π/6 + i sin 11π/6)

Here n  =  3, r  =  27, and θ  =  11π/6

If k  =  0

z0  =  3√27[cos ((11π/6 + 2π(0)/3) + i sin ((11π/6 + 2π(0)/3)]

z0  =  3[cos (11π/18) + i sin (11π/18)]

If k  =  1

z1  =  3√27[cos ((11π/6 + 2π(1))/3) + i sin ((11π/6 + 2π(1))/3)]

z1  =  3[cos (23π/18) + i sin (23π/18)]

If k  =  2

z2  =  3√27[cos ((11π/6 + 2π(2)/3) + i sin ((11π/6 + 2π(2)/3)]

z2  =  3[cos (35π/18) + i sin (35π/18)]

Example 5 :

-2 + 2i

Solution :

Given, standard form of z  =  -2 + 2i

The polar form of the complex number z is

-2 + 2i  =  r(cos θ + i sin θ) ---(1)

Finding r :

r  =  √[(2)+ (2)2]

r  = √8

Finding the α :

α  =  tan-1(2/2)

α  =  π/4

Since the complex number -2 + 2i is negative and positive, z lies in the second quadrant.

So, the principal value θ  =  π - π/4

θ  =  3π/4

By applying the value of r and θ in equation (1), we get

-2 + 2i  =  √8(cos 3π/4 + i sin 3π/4)

So, the polar form is 

√8(cos 3π/4 + i sin 3π/4)

zk  =  n√r[cos ((θ + 2πk)/n) + i sin ((θ + 2πk)/n)]

For k  =  0, 1, and 2 we obtain the roots.

Here n  =  3, r  =  √8, and θ  =  3π/4

If k  =  0

z0  =  3√(√8)[cos (3π/4 + 2π(0)/3) + i sin (3π/4 + 2π(0)/3)]

By m√(n√a)  =  mn√a, we get

z0  6√8[cos 3π/12 + i sin 3π/12]

If k  =  1

z1  =  3√(√8)[cos (3π/4 + 2π(1)/3) + i sin (3π/4 + 2π(1)/3)]

z1  =  6√8[cos 11π/12 + i sin 11π/12]

If k  =  2

z2  =  3√(√8)[cos (3π/4 + 2π(2)/3) + i sin (3π/4 + 2π(2)/3)]

z2  =  6√8[cos 19π/12 + i sin 19π/12]

Example 6 :

Determine the fourth roots of –8 + 83 i . Give answers in rectangular form.

Solution :

Given, standard form of z  =  –8 + 83 i

The polar form of the complex number z is

–8 + 83 i =  r(cos θ + i sin θ) ---(1)

Finding r :

r  =  √[(-8)+ (83)2]

r  = √64 + 64(3)

= √64 + 192

= √256

= 16

Finding the α :

α  =  tan-1(83/8)

α  =  tan-1(-3)

α  =  π/3

Since the complex number –8 + 83i is negative and positive, z lies in the second quadrant.

So, the principal value θ = π - π/3

= 2π/3

By applying the value of r and θ in equation (1), we get

–8 + 83 i  = 16(cos 2π/3 + i sin 2π/3)

So, the polar form is 

16(cos 2π/3 + i sin 2π/3)

zk  =  n√r[cos ((θ + 2πk)/n) + i sin ((θ + 2πk)/n)]

zk  =  4√r[cos ((θ + 2πk)/4) + i sin ((θ + 2πk)/4)]

=  2[cos ((2π + 6πk)/4) + i sin ((2π + 6πk)/4)]

=  2[cos (2 + 6k)(π/12) + i sin (2 + 6k)(π/12)]

For k = 0, 1, 2 and 3 we obtain the roots.

Here n = 4, r = 16 and θ  =  π/3

If k = 0

=  2[cos (2π/12) + i sin (2π/12)]

=  2[cos (π/6) + i sin (π/6)]

=  2[√3/2 + i (1/2)]

=  2[(√3 + i)/2]

(√3 + i)

If k = 1

=  2[cos (8π/12) + i sin (8π/12)]

=  2[cos (2π/3) + i sin (2π/3)]

=  2(-1 + i√3)/2

(-1 + i√3)

If k = 2

=  2[cos (14π/12) + i sin (14π/12)]

=  2[cos (7π/6) + i sin (7π/6)]

=  2(-√3 - i)/2

-√3 - i

If k = 3

=  2[cos (20π/12) + i sin (20π/12)]

=  2[cos (5π/4) + i sin (5π/4)]

=  2(1 - i√3)/2

= 1 - i√3

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. Digital SAT Math Problems and Solutions (Part - 146)

    Apr 18, 25 06:52 AM

    digitalsatmath176.png
    Digital SAT Math Problems and Solutions (Part - 146)

    Read More

  2. Logarithmic Derivative Problems and Solutions

    Apr 16, 25 09:25 PM

    Logarithmic Derivative Problems and Solutions

    Read More

  3. Digital SAT Math Problems and Solutions (Part - 145)

    Apr 16, 25 12:35 PM

    digitalsatmath173.png
    Digital SAT Math Problems and Solutions (Part - 145)

    Read More