How to find the cube root of a complex number ?
Let z = r(cos θ + i sin θ) and n be a positive integer.
Then z has n distinct nth roots given by,
zk = n√r[cos ((θ + 2πk)/n) + i sin ((θ + 2πk)/n)]
(where k = 0, 1, 2, 3, … , n -1)
We are using the nth roots formula, to find the cube root of a complex number.
Example 1 :
2(cos 2π + i sin 2π)
Solution :
Given, z = 2(cos 2π + i sin 2π)
Using the nth roots formula :
zk = n√r[cos ((θ + 2πk)/n) + i sin ((θ + 2πk)/n)]
For k = 0, 1, and 2 we obtain the roots.
Here n = 3, r = 2, and θ = 2π
If k = 0
z0 = 3√2[cos ((2π + 2π(0)/3) + i sin ((2π + 2π(0)/3)]
z0 = 3√2[cos (2π/3) + i sin (2π/3)]
If k = 1
z1 = 3√2[cos ((2π + 2π(1)/3) + i sin ((2π + 2π(1)/3)]
z1 = 3√2[cos (8π/3) + i sin (8π/3)]
If k = 2
z2 = 3√2[cos ((2π + 2π(2))/3) + i sin ((2π + 2π(2))/3)]
z2 = 3√2[cos (10π/3) + i sin (10π/3)]
Example 2 :
2(cos π/4 + i sin π/4)
Solution :
Given, z = 2(cos π/4 + i sin π/4)
zk = n√r[cos ((θ + 2πk)/n) + i sin ((θ + 2πk)/n)]
Here n = 3, r = 2, and θ = π/4
If k = 0
z0 = 3√2[cos ((π/4 + 2π(0)/3) + i sin ((π/4 + 2π(0)/3)]
z0 = 3√2[cos (π/12) + i sin (π/12)]
If k = 1
z1 = 3√2[cos ((π/4 + 2π(1)/3) + i sin ((π/4 + 2π(1)/3)]
z1 = 3√2[cos (9π/12) + i sin (9π/12)]
If k = 2
z2 = 3√2[cos ((π/4 + 2π(2)/3) + i sin ((π/4 + 2π(2)/3)]
z2 = 3√2[cos (17π/12) + i sin (17π/12)]
Example 3 :
3(cos 4π/3 + i sin 4π/3)
Solution :
Given, z = 3(cos 4π/3 + i sin 4π/3)
Here n = 3, r = 3, and θ = 4π/3
If k = 0
z0 = 3√3[cos ((4π/3 + 2π(0)/3) + i sin ((4π/3 + 2π(0)/3)]
z0 = 3√3[cos (4π/9) + i sin (4π/9)]
If k = 1
z1 = 3√3[cos ((4π/3 + 2π(1)/3) + i sin ((4π/3 + 2π(1)/3)]
z1 = 3√3[cos (10π/9) + i sin (10π/9)]
If k = 2
z2 = 3√3[cos ((4π/3 + 2π(2)/3) + i sin ((4π/3 + 2π(2)/3)]
z2 = 3√2[cos (16π/9) + i sin (16π/9)]
Example 4 :
27(cos 11π/6 + i sin 11π/6)
Solution :
Given, z = 27(cos 11π/6 + i sin 11π/6)
Here n = 3, r = 27, and θ = 11π/6
If k = 0
z0 = 3√27[cos ((11π/6 + 2π(0)/3) + i sin ((11π/6 + 2π(0)/3)]
z0 = 3[cos (11π/18) + i sin (11π/18)]
If k = 1
z1 = 3√27[cos ((11π/6 + 2π(1))/3) + i sin ((11π/6 + 2π(1))/3)]
z1 = 3[cos (23π/18) + i sin (23π/18)]
If k = 2
z2 = 3√27[cos ((11π/6 + 2π(2)/3) + i sin ((11π/6 + 2π(2)/3)]
z2 = 3[cos (35π/18) + i sin (35π/18)]
Example 5 :
-2 + 2i
Solution :
Given, standard form of z = -2 + 2i
The polar form of the complex number z is
-2 + 2i = r(cos θ + i sin θ) ---(1)
Finding r : r = √[(2)2 + (2)2] r = √8 |
Finding the α : α = tan-1(2/2) α = π/4 |
Since the complex number -2 + 2i is negative and positive, z lies in the second quadrant.
So, the principal value θ = π - π/4
θ = 3π/4
By applying the value of r and θ in equation (1), we get
-2 + 2i = √8(cos 3π/4 + i sin 3π/4)
So, the polar form is
√8(cos 3π/4 + i sin 3π/4)
zk = n√r[cos ((θ + 2πk)/n) + i sin ((θ + 2πk)/n)]
For k = 0, 1, and 2 we obtain the roots.
Here n = 3, r = √8, and θ = 3π/4
If k = 0
z0 = 3√(√8)[cos (3π/4 + 2π(0)/3) + i sin (3π/4 + 2π(0)/3)]
By m√(n√a) = mn√a, we get
z0 = 6√8[cos 3π/12 + i sin 3π/12]
If k = 1
z1 = 3√(√8)[cos (3π/4 + 2π(1)/3) + i sin (3π/4 + 2π(1)/3)]
z1 = 6√8[cos 11π/12 + i sin 11π/12]
If k = 2
z2 = 3√(√8)[cos (3π/4 + 2π(2)/3) + i sin (3π/4 + 2π(2)/3)]
z2 = 6√8[cos 19π/12 + i sin 19π/12]
Apart from the stuff given above, if you need any other stuff in math, please use our google custom search here.
Kindly mail your feedback to v4formath@gmail.com
We always appreciate your feedback.
©All rights reserved. onlinemath4all.com
Dec 27, 24 10:53 PM
Dec 27, 24 10:48 PM
Dec 26, 24 07:41 AM